Vol 11 No. 2, Oktober 2025

P-ISSN: 2477-5029 E-ISSN: 2502-0498

Kajian Efisiensi Inkubator Untuk Penetasan Telur Puyuh

Kamarullah*1, Zulfan², Misswar Abd³, Al Munawir⁴, Andi Mulkan⁵

1,3,5 Prodi Teknik Mesin, Fakultas Teknik, Universitas Iskandar Muda, Indonesia
 Jln. Kampus Unida No 15 Surien, 23234, Indonesia
 ²Teknik Mesin, Fakultas Teknik, Universitas Syiah Kuala, Indonesia
 Jl. Teuku Nyak Arief No.441, Kopelma Darussalam, Kec. Syiah Kuala, Kota Banda Aceh, Aceh 23111,
 Indonesia

⁴Jurusan Teknik Mesin, Fakultas Teknik, Universitas Teuku Umar, Indonesia Jl. Alue Peunyareng, Gunong Kleng, Kec. Meureubo, Kabupaten Aceh Barat, Aceh 23681, Indonesia e-mail: *1kamarullah@unida-aceh.ac.id

Abstrak

Inkubator merupakan salah satu penerapan secara tidak langsung energy panas untuk menetaskan telur puyuh sebagai pengganti induknya, daya tetas induk alami mencapai 90% sedangkan daya tetas dengan incubator mencapai 70% sampai dengan 80%. Dari pengamatan dan analisa hasil pengujian, variasi bola lampu dan daya yang digunakan sangat mmpengaruhi temperature ruangan incubator. Pengujian menggunakan empat lampu dengan daya 160 watt, enam lampu dengan daya 130 watt, dua lampu dengan daya 120 watt, empat lampu dengan daya 100 watt dan menggunakan menggunakan delapan lampu dengan daya 80 watt kurang efisien karena temparatur yang dihasilkan berkisar antara 40 0 C sampai dengan 41,5 0 C, kemudian pada pengujian menggunakan enam lampu dengan daya 90 watt temperature yang dihasilkan sangat seragam berkisar antara 39 °C sampai dengan 40 °C sehingga sudah sangat efisien unuk dilakukan pengujian penetasan. Berdasarkan hasil perhitungan, inkubator kecil dengan asumsi daya 60 watt yang digunakan selama 20 hari untuk menetaskan 78 butir telur puyuh membutuhkan energi total sekitar 28,8 kWh, atau 0,37 kWh per butir telur. Tingkat daya tetas yang diperoleh sebesar 78%, masih di bawah penetasan alami (±90%), namun sudah sesuai dengan kisaran inkubator skala rumah tangga (70–80%). Hal ini menunjukkan bahwa sistem inkubator sudah cukup baik, tetapi masih perlu peningkatan efisiensi dan pengaturan suhu agar hasil penetasan lebih optimal.

Kata kunci — Inkubator, Temperatur, Penetasan, Energi.

Abstract

An incubator is one of the indirect applications of heat energy used to hatch quail eggs as a substitute for the mother. The natural hatching rate of the mother reaches 90%, while the hatching rate using an incubator ranges from 70% to 80%. Based on observations and analysis of test results, the variation of light bulbs and the power used greatly affect the incubator room temperature. The tests using four lamps of 160 watts, six lamps of 130 watts, two lamps of 120 watts, four lamps of 100 watts, and eight lamps of 80 watts were found to be less efficient because the resulting temperature ranged between 40 °C and 41.5 °C. Meanwhile, in the test using six lamps of 90 watts, the resulting temperature was very uniform, ranging between 39 °C and 40 °C, making it highly efficient for hatching Based on the calculations, a small incubator with a power of 60 watts used for 20 days to hatch 78 quail eggs requires a total energy of approximately 28.8 kWh, or about 0.37 kWh per egg. The hatching rate achieved was 78%,

Vol 11 No. 2, Oktober 2025

P-ISSN: 2477-5029 E-ISSN: 2502-0498

which is lower than the natural hatching rate (around 90%), but still within the typical range for household-scale incubators (70–80%). This indicates that the incubator system is fairly effective, though further improvements in efficiency and temperature control are needed to achieve more optimal hatching results

Keywords — Incubator, Temperature, Hatching, Energy.

1. PENDAHULUAN

Telur puyuh merupakan salah satu komoditas unggas yang memiliki nilai ekonomis tinggi dan banyak diminati masyarakat sebagai sumber protein hewani. Tingginya permintaan terhadap telur puyuh menuntut peningkatan produksi yang berkelanjutan [1]. Namun, metode penetasan secara alami dengan indukan memiliki keterbatasan, seperti kapasitas terbatas, ketergantungan pada kondisi fisiologis induk, serta tingkat keberhasilan yang bervariasi [2].

Oleh karena itu, penggunaan inkubator sebagai media penetasan buatan menjadi solusi untuk meningkatkan produktivitas. Efisiensi inkubator sangat dipengaruhi oleh pengaturan suhu, kelembaban, sirkulasi udara, serta kapasitas daya listrik yang digunakan [3]. Inkubator yang dirancang dengan baik diharapkan mampu meningkatkan daya tetas telur mendekati tingkat penetasan alami, sekaligus menekan biaya operasional [4]. Dengan demikian, kajian terhadap efisiensi inkubator sangat penting untuk mengetahui sejauh mana teknologi ini dapat memberikan hasil yang optimal, baik dari segi teknis maupun ekonomis [5]. Setelah mengamati beberapa hasil percobaan sebelumnya maka dilakukan pengujian kembali dengan memperkecil daya sebesar 20 watt, maka dari hasil pengujian temperatur ruangan sudah mulai stabil berkisar antara 39 °C sampai dengan 40 °C, temperatur ini sudah memenuhi standarisasi untuk penetasan, maka dapat di ambil kesimpulkan dari beberapa percobaan yang telah kami lakukan maka hasil pengujian ini layak untuk jadi rujukan untuk penetasan yaitu inkubator dengan jumlah lampu enam buah dengan dayanya sebesar 90 watt [6].

Dari hasil analisa dan grafik dapat diketahui bahwa hasil yang paling maksimal dan ideal adalah pengujian yang menggunakan enam lampu pijar yang layak digunakan untuk penetasan telur puyuh dibandingkan dengan beberapa pengujian yang lainnya, karena temperaturnya sudah mencapai temperatur standarisasi berkisar antara 39 0 C sampai dengan 40 0 C [6].

2. METODE PENELITIAN

2.1 Jenis Penelitian

Penelitian ini menggunakan metode eksperimen kuantitatif untuk menguji kinerja inkubator dalam proses penetasan telur puyuh dengan memperhatikan distribusi panas, kelembaban, konsumsi energi, serta daya tetas [3].

Gambar 2.1 Ruang penetasan

Vol 11 No. 2, Oktober 2025

P-ISSN: 2477-5029 F-ISSN: 2502-0498

E-ISSN: 2502-0498

Ruang penetasan merupakan bagian terpenting dalam penetasan telur karena didalam ruangan ini terjadi proses transfer energi panas dari lampu keruang penetasan dengan adanya energi panas yang ditransfer keruangan penetasan maka air yang ada didalam ruangan akan menguap sehingga kelembaban akan tersebar didalam ruangan.

Dalam *Teknologi Penetasan Telur Unggas*, kelembaban optimal untuk telur puyuh berkisar antara **60–70% RH**. Pada kelembaban tersebut, daya tetas mencapai **78–85%**, sedangkan pada kelembaban di bawah 50% atau di atas 80%, tingkat kematian embrio meningkat signifikan [7].

Gambar 2.2 Rak penetasan

Rancangan rak telur puyuh dibuat dengan menyesuaikan ukuran telur puyuh yang relatif kecil, yaitu panjang sekitar 30 mm dan diameter sekitar 25 mm [7]. Kapasitas satu rak umumnya berkisar antara 60 hingga 120 butir telur, tergantung pada ukuran telur dan jarak antar lubang penempatan [8].

Rak ini terdiri atas rangka utama yang dapat dibuat dari bahan aluminium, kawat galvanis, atau kayu ringan agar kokoh namun tetap ringan dan tahan terhadap panas [9]. Setiap lubang dudukan telur berbentuk setengah bola atau kerucut dengan diameter sekitar 2,5 cm, serta memiliki kemiringan antara 35 hingga 45 derajat untuk memudahkan proses pembalikan telur [10]. Jarak antar baris lubang diatur minimal 2 cm guna menjaga sirkulasi udara panas dan lembab di dalam inkubator tetap merata [3].

2.2 Waktu dan Tempat Penelitian

Penelitian dilakukan selama 20 hari (1 siklus penetasan) di laboratorium thermal dan energy dengan fasilitas inkubator skala kecil.

2.3 Alat dan Bahan

Alat yang digunakan meliputi inkubator, termometer digital, higrometer, wattmeter, stopwatch, Bahan penelitian berupa telur puyuh fertil sebanyak 100 butir

2.4 Variabel Penelitian

- Independen: Suhu dan kelembaban.
- Dependen: Daya tetas telur (%).
- Pengontrolan: Lama pengeraman, kualitas telur, posisi telur

2.5 Prosedur Penelitian

- 1. Menyeleksi telur puyuh fertil dengan berat seragam.
- 2. Menyiapkan inkubator dengan suhu 39-40 °C dan kelembaban 60-70%.
- 3. Memasukkan telur ke dalam inkubator, memantau suhu dan kelembaban.
- 4. Mengukur konsumsi energi listrik dengan wattmeter
- 5. Membalik telur secara rutin (2 kali sehari) hingga hari ke-14

Vol 11 No. 2, Oktober 2025

P-ISSN: 2477-5029 E-ISSN: 2502-0498

6. Menghentikan pembalikan pada hari ke-15–20 dan menunggu proses penetasan

7. Menghitung daya tetas dan efisiensi energi.

2.6 Analisis Perpindahan Panas

Mekanisme perpindahan panas dalam inkubator terdiri dari konduksi, konveksi, dan radiasi, yang masing-masing dihitung dengan persamaan dasar perpindahan panas [11].

2.6.1 Konduksi – Panas merambat melalui dinding inkubator atau rak telur.

$$Q_{konduksi} = k \cdot A \cdot \Delta T / L \qquad (2.1)$$

Rumus ini menunjukkan panas yang berpindah dipengaruhi oleh konduktivitas material isolasi, luas permukaan, beda suhu, dan ketebalan dinding [12].

2.6.2 Konveksi – Panas berpindah melalui udara di dalam inkubator, baik alami maupun dengan bantuan kipas.

$$Q_{konveksi} = h \cdot A \cdot \Delta T \qquad (2.2)$$

Persamaan ini menggambarkan bahwa laju konveksi dipengaruhi oleh koefisien konveksi, luas permukaan, dan beda suhu antara udara dengan permukaan telur [11].

2.6.3 Radiasi – Panas dipancarkan oleh sumber panas (lampu pijar/elemen pemanas) ke permukaan telur.

$$Q_{\text{Radiasi}} = \varepsilon \cdot \sigma \cdot A \left(T_{\text{permukaan}}^4 - T_{\text{lingkungan}}^4 \right) \tag{2.3}$$

Radiasi dipengaruhi oleh emisivitas permukaan, luas permukaan, serta perbedaan suhu dalam bentuk pangkat empat [13].

- 7. Teknik Analisis Data
- 7.1 Menghitung daya tetas:

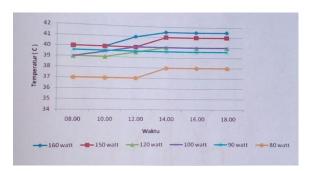
Daya Tetas (%) =
$$\frac{\text{telur menetas}n}{\text{Jumlah telur fertil}} + 100\%$$
 (2.4)

7.2 Menghitung efisiensi energi:

Efisiensi Energi (kWh/ekor) =
$$\frac{\text{Total energi (kWh)}}{\text{Jumlah telur menetas}} + 100\%$$
 (2.5)

3. HASIL DAN PEMBAHASAN

3.1 Hasil Pengamatan Suhu dan Kelembaban


Hasil pengukuran suhu di dalam inkubator menunjukkan bahwa suhu rata-rata berada pada kisaran 39–40 °C [6]. Suhu ini termasuk dalam kisaran ideal untuk perkembangan embrio puyuh [2]. Namun, pengamatan pada lima titik berbeda (atas, bawah, kanan, kiri, tengah)

Vol 11 No. 2, Oktober 2025

P-ISSN: 2477-5029

E-ISSN: 2502-0498

menunjukkan adanya perbedaan distribusi suhu sebesar $\pm 1^{\circ}$ C. Hal ini disebabkan oleh distribusi panas yang belum merata akibat perbedaan mekanisme perpindahan panas di dalam ruang inkubator [11].

Gambar 3.1 Distribusi temperatur dengan variasi daya lampu

Kelembaban udara di dalam inkubator terjaga pada kisaran 60-70%, dengan fluktuasi rata-rata $\pm 3\%$ setiap harinya. Kondisi kelembaban ini berperan penting dalam mencegah penguapan air yang berlebihan dari dalam telur. Jika kelembaban terlalu rendah, embrio dapat mengalami dehidrasi; sebaliknya, kelembaban terlalu tinggi akan menghambat penguapan cairan, sehingga embrio kesulitan memecahkan cangkang saat menetas [14].

3.2 Hasil Penetasan Telur

Pengujian menggunakan 100 butir telur puyuh fertil menghasilkan data sebagai berikut:

- Jumlah telur yang berhasil menetas: 78 butir
- Jumlah telur gagal menetas: 22 butir
- Tingkat daya tetas:

Daya Tetas (%) =
$$\frac{78}{100}$$
 x 100% = 78 %

Tingkat daya tetas sebesar 78% ini masih lebih rendah dibandingkan daya tetas alami induk puyuh yang dapat mencapai $\pm 90\%$ [2]. Namun, hasil ini cukup baik dan sesuai dengan laporan [3] serta [4] yang menyebutkan bahwa inkubator sederhana umumnya menghasilkan daya tetas pada kisaran 70–80%.

3.3 Konsumsi Energi

Selama periode penetasan (20 hari), inkubator mengonsumsi energi listrik dalam kWh dengan asumsi acuan dasar energi yang masuk 60 watt dan jumlah anak puyuh yang menetas sebanyak 78 ekor, maka diperoleh konsumsi energinya adalah:

Energi yang dikonsumsikan setiap telur puyuh dapat dihitung

$$E_{per telur} = 28.8 \text{ kWh} / 78 \text{ telor}$$

 $E_{per telur} = 0.369 \text{ kWh/telor}$

Vol 11 No. 2, Oktober 2025

P-ISSN: 2477-5029 E-ISSN: 2502-0498

Artinya, setiap ekor anak puyuh yang menetas membutuhkan suplai energi sebesar 0,369 kWh. Nilai ini cukup efisien bila dibandingkan dengan penelitian [15], yang melaporkan konsumsi energi 0,35–0,40 kWh/ekor pada inkubator skala kecil.

4.4 Analisis Perpindahan Panas

Efisiensi inkubator sangat dipengaruhi oleh mekanisme perpindahan panas. Tiga mekanisme utama adalah konduksi, konveksi, dan radiasi.

a. Konduksi

Konduksi terjadi pada saat panas merambat melalui dinding inkubator. Dengan ketebalan dinding 1 cm (0,01 m), bahan triplek (konduktivitas termal (k = 0,12 , W/m $^{2.0}$ K)), luas permukaan 0,5 m 2 , dan perbedaan suhu dalam-luar sebesar 10 °C, diperoleh:

$$\begin{aligned} &Q_{konduksi} = k \cdot A \cdot \Delta T \ / \ L \\ &Q_{konduksi} = 0.12 \ x \ 0.5 \ (10) \ / \ (0.01) = 60 \ \ W \end{aligned}$$

Artinya, sekitar 60 watt energi panas hilang melalui konduksi dinding jika isolasi tidak ditingkatkan. Kehilangan panas ini cukup signifikan dan dapat menurunkan kestabilan suhu di dalam inkubator [12].

b. Konveksi

Konveksi terjadi karena adanya sirkulasi udara di dalam inkubator. Tanpa kipas sirkulasi, distribusi suhu cenderung tidak merata, di mana bagian atas inkubator lebih panas dibanding bagian bawah. Dengan koefisien konveksi rata-rata (h = 8, W/m²·K), luas permukaan telur (A = 0,03, m²), dan selisih suhu (Δ T = 2 °C), diperoleh:

$$\begin{aligned} &Q_{konveksi} = h \cdot A \cdot \Delta T \\ &Q_{konveksi} = 8 \ x \ (0,003) \ x \ 2 \\ &Q_{konveksi} = 0,42 \ W \end{aligned}$$

Walaupun relatif kecil dibandingkan konduksi, peran konveksi sangat vital dalam menjaga suhu telur tetap seragam. Penambahan kipas kecil dapat meningkatkan konveksi paksa sehingga distribusi panas menjadi lebih merata [11].

c. Radiasi

Sumber panas utama berupa lampu pijar juga mentransfer panas melalui radiasi. Dengan emisi radiasi (ϵ = 0,9), suhu permukaan/lampu (T_1 = 312 0 K), suhu lingkungan (T_2 = 298 0 K), luas permukaan lampu (A = 0,02 , m^2), dan konstanta Stefan-Boltzmann (σ = 5,67 x 10-8), diperoleh:

```
\begin{split} &Q_{Radiasi} = \epsilon \cdot \sigma \cdot A \; (T^4_{permukaan} - T^4_{lingkungan}) \\ &Q_{Radiasi} = \epsilon \cdot \sigma \cdot A \; (T^4_{1} - T^4_{2}) \\ &Q_{Radiasi} = 0.9 \; x \; (5,67 \; x \; 10^{-8}) \; x \; (0,02) \; x \; \{(312)^4 - (298)^4\} \\ &Q_{Radiasi} = 1.62 \; watt \end{split}
```

Nilai ini cukup signifikan, dan radiasi membantu proses pemanasan awal. Namun, distribusi radiasi yang tidak merata berpotensi menyebabkan *hotspot* pada telur tertentu [15].

Vol 11 No. 2, Oktober 2025

P-ISSN: 2477-5029 E-ISSN: 2502-0498

E-ISSN - 2502-0498

4. KESIMPULAN

Berdasarkan hasil perhitungan, inkubator kecil dengan daya yang digunakan selama 20 hari untuk menetaskan 78 butir telur puyuh membutuhkan energi total sebesar 28,8 kWh. Konsumsi energi rata-rata per butir telur adalah sekitar 0,37 kWh.

Hasil penelitian menunjukkan bahwa tingkat daya tetas inkubator sebesar 78% masih di bawah standar alami (±90%), namun sudah sesuai dengan kisaran daya tetas inkubator skala rumah tangga (70–80%). Hal ini menunjukkan bahwa sistem inkubator masih perlu dilakukan optimalisasi.

Beberapa faktor yang berpengaruh adalah:

- 1. Fluktuasi suhu akibat distribusi panas yang tidak merata. Suhu berbeda antara bagian atas dan bawah inkubator akibat konveksi alami yang lemah. Tanpa adanya kipas, udara panas cenderung berkumpul di bagian atas.
- 2. Kehilangan panas akibat konduksi. Dinding inkubator yang hanya menggunakan lapisan triplek tipis memiliki konduktivitas termal cukup tinggi. Hal ini menyebabkan kehilangan panas konduksi sebesar 60 W, yang membuat energi listrik lebih banyak terbuang
- 3. Ketidakseimbangan radiasi. posisi lampu yang terlalu dekat dengan telur dapat menyebabkan radiasi berlebih di area tertentu, sehingga memunculkan perbedaan suhu antar titik

5. SARAN

Untuk meningkatkan kinerja, beberapa solusi yang dapat diterapkan adalah:

- Isolasi termal ditingkatkan dengan menggunakan bahan isolator seperti styrofoam atau glasswool agar kehilangan konduksi berkurang.
- Penambahan kipas kecil untuk meningkatkan konveksi paksa sehingga suhu lebih merata.
- Pengaturan sumber panas agar distribusi radiasi lebih seragam, atau mengganti lampu pijar dengan elemen pemanas yang dikontrol otomatis menggunakan thermostat digital.

Dengan perbaikan tersebut, diharapkan daya tetas inkubator dapat meningkat mendekati standar alami, sekaligus efisiensi energi juga lebih baik.

UCAPAN TERIMA KASIH

Puji syukur penulis panjatkan ke hadirat Allah SWT atas terselesaikannya penelitian ini. Ucapan terima kasih penulis sampaikan kepada dosen-dosen yang ikut terlibat dalam penelitian, pihak laboratorium, rekan-rekan, serta keluarga tercinta atas dukungan, bimbingan, dan doa yang diberikan. Semoga karya ini bermanfaat bagi pengembangan ilmu teknik konversi energi dan praktik di bidang peternakan.

Vol 11 No. 2, Oktober 2025

P-ISSN: 2477-5029 E-ISSN: 2502-0498

DAFTAR PUSTAKA

- [1] Kartasudjana, R., & Suprijatna, E. 2010, Manajemen Ternak Unggas. Jakarta, *Penebar Swadaya*.
- [2] Yuwanta, T. 2011. Dasar Ternak Unggas. Yogyakarta, Kanisius.
- [3] Wahyudi, S. 2019, Pengaruh Suhu dan Kelembaban Inkubator terhadap Daya Tetas Telur Puyuh, *Jurnal Peternakan Indonesia*, 21(3), 145–152.
- [4] Nugraha, A., & Prasetyo, R. 2020. Rancang Bangun Inkubator Hemat Energi untuk Penetasan Telur Puyuh, *Jurnal Teknologi Pertanian*, 15(2), 55–62.
- [5] Sudibyo, A., & Rahardjo, B., 2021, Analisis Efisiensi Energi pada Inkubator Penetasan Telur Unggas Skala Kecil, *Jurnal Energi dan Mesin Pertanian*, 9(1), 25–33.
- [6] Kamarullah, Misswar Abd, Zulfan, Nazaruddin dan Al Munawir., 2023., Kajian Distribusi Temperatur pada Inkubator Penetas Telur Puyuh., *Jurnal Mekanova Mekanikal, Inovasi dan Teknologi.*, Vol 9 No 2., hal 132-139.
- [7] Arifin, M., & Sugiarto, H. 2018. Teknologi Penetasan Telur Unggas. Yogyakarta, Gadjah Mada University Press.
- [8] Prasetyo, D., 2019. Perancangan Rak Telur Otomatis untuk Inkubator Puyuh Berbasis Mikrokontroler, *Jurnal Teknologi Mesin Pertanian*, 7(1), 15–23.
- [9] Sutanto, R., & Handayani, L., 2020. Optimasi Desain Rak Inkubator terhadap Daya Tetas Telur Unggas. *Jurnal Rekayasa dan Aplikasi Teknik Mesin*, 8(2), 41–49.
- [10] Rahardjo, S., 2021. Sistem Inkubasi Otomatis Berbasis Mikrokontroler. Surabaya: *ITS Press*
- [11] Cengel, Y. A., & Ghajar, A. J., 2015. Heat and Mass Transfer: Fundamentals and Applications. *New York: McGraw-Hill*.
- [12] Incropera, F. P., & DeWitt, D. P., 2007. Fundamentals of Heat and Mass Transfer. *New York: Wiley*.
- [13] Sainsbury, D., 2000. Poultry Health and Management. Oxford: Blackwell Science.
- [14] Kartasudjana, R., & Suprijatna, E. 2010. *Manajemen Ternak Unggas*. Jakarta: Penebar Swadaya.
- [15] Sudibyo, A., & Rahardjo, B., 2021., Analisis Efisiensi Energi pada Inkubator Penetasan Telur Unggas Skala Kecil. *Jurnal Energi dan Mesin Pertanian*, 9(1), 25–33.