Analisis Mesh Size Untuk Konvergensi Coil Spring Roda Depan Minibus Menggunakan Metode Elemen Hingga
Abstract
Abstract
Mesh convergence in finite element analysis is crucial for ensuring simulation accuracy, especially in vehicle coil springs. However, limited studies have evaluated the balance between accuracy and computational efficiency due to mesh size variations. Stress-strain data is obtained from the strain that occurs when driving by installing a strain gauge on the coil spring. This study analyzes the effect of mesh size on stress distribution, deformation, and computation time in the front coil spring of a minibus using FEMAP NX Nastran software. The results show that smaller mesh sizes yield higher stress and deformation values, with a maximum stress of 817 MPa at a 0.1 mesh size and 733 MPa at a 0.6 mesh size. While improving accuracy, finer mesh sizes significantly increase computation time. Therefore, balancing accuracy and computational efficiency is essential for optimizing coil spring design, with further research recommended to determine the optimal mesh size in finite element simulations.
Keywords— Mesh Convergence, Finite Element Analysis, Stress Distribution, Computational Efficiency
Full Text:
PDFReferences
T. Naumov, J. Hadfield, and M. Tan, “Effect Of Shell Element Mesh Size On Finite Element Results.”
G. Cadet and M. Paredes, “Convergence analysis and mesh optimization of finite element analysis related to helical springs,” Mechanics and Industry, vol. 25, 2024, doi: 10.1051/meca/2024018.
J. Oliver, A. E. Huespe, and P. J. Sánchez, “A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM,” Comput Methods Appl Mech Eng, vol. 195, no. 37–40, pp. 4732–4752, Jul. 2006, doi: 10.1016/j.cma.2005.09.020.
H. Patil and P. V. Jeyakarthikeyan, “Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of ANSYS,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2018. doi: 10.1088/1757-899X/402/1/012065.
J. Valeš and Z. Kala, “Mesh convergence study of solid FE model for buckling analysis,” in AIP Conference Proceedings, American Institute of Physics Inc., Jul. 2018. doi: 10.1063/1.5043796.
A. Dutt, “Effect of Mesh Size on Finite Element Analysis of Beam,” International Journal of Mechanical Engineering, vol. 2, no. 12, pp. 8–10, Dec. 2015, doi: 10.14445/23488360/IJME-V2I12P102.
H. Patil and P. V. Jeyakarthikeyan, “Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of ANSYS,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2018. doi: 10.1088/1757-899X/402/1/012065.
P. Simulasi et al., “Sasis Mobil BAJA SAE,” Jurnal Mekanova : Mekanikal, Inovasi dan Teknologi, vol. 10, no. 2, 2024.
I. Imoro, J. K. Nkrumah, B. Ziblim, and A.-H. Mohammed, “Analysis of the Material Properties of Vehicle Suspension Coil Spring,” World Journal of Engineering and Technology, vol. 11, no. 04, pp. 827–858, 2023, doi: 10.4236/wjet.2023.114056.
J. Larsson, “Spring Element Evaluation Using Finite Element Analysis,” 2019.
“Investigating FEA Results (Mesh Convergence).” [Online]. Available: https://www.valuedes.co.uk/investigating-fea-results.html
J. Harahap, T. Riyadhsyah, J. Teknik Mesin Politeknik Negeri Lhokseumawe, and J. Teknik Elektro Politeknik Negeri Lhokseumawe, “Pembuatan Material Pereduksi Panas Eco-Friendly Berbasis Komposit dengan Memanfaatkan Ampas Sagu,” Jurnal Mekanova : Mekanikal, Inovasi dan Teknologi, vol. 11, no. 1, 2025.
N. Naik, P. Shenoy, N. Nayak, S. Awasthi, and R. Samant, “Nithin Nayak, Swetank Awasthi and Rashmi Samant, Mesh Convergence Test for Finite Element Method on High Pressure Gas Turbine Disk Rim Using Energy Norm: An Alternate Approach,” International Journal of Mechanical Engineering and Technology (IJMET), vol. 10, no. 1, pp. 765–775, 2019, doi: 10.34218/IJMET.10.1.2019.078.
H. Jagodang, Husaini, E. P. Teuku, and S. Dieter, “Stress analysis on an automotive coil spring driven on flat, uphill, and downhill road surfaces,” in Key Engineering Materials, Trans Tech Publications Ltd, 2021, pp. 124–128. doi: 10.4028/www.scientific.net/KEM.892.124.
G. Cadet and M. Paredes, “A new exhaustive semi-analytical method to calculate stress distribution on the surface of a curved beam with circular cross section, with an application to helical compression springs,” 2023.
J. Zhu et al., “Composite structure helical springs with designability of spring constants: Structural design and compression property evaluation,” Polym Compos, vol. 46, no. S2, pp. S537–S549, Sep. 2025, doi: 10.1002/pc.29856.
Y. Sanjaya, A. R. Prabowo, F. Imaduddin, and N. A. B. Nordin, “Design and analysis of mesh size subjected to wheel rim convergence using finite element method,” in Procedia Structural Integrity, Elsevier B.V., 2021, pp. 51–58. doi: 10.1016/j.prostr.2021.10.008.
ncode, “Powerful System for Test Data Processing and Durability Analysis Product Details,” 2024. [Online]. Available: www.hbmprenscia.com
J. Harahap, K. Mizan, and P. Pribadyo, “Analisis Distribusi Tegangan Pada Sistem Suspensi Depan Minibus Dengan Beban Bervariasi,” Austenit, vol. 16, no. 1, pp. 48–54, May 2024, doi: 10.53893/austenit.v16i1.8558.
DOI: https://doi.org/10.35308/jmkn.v11i2.12695
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




