Laju Korosi Atmosferik Baja Konstruksi di Area Pabrik PT. Karya Tanah Subur

Joli Supardi, Herdi Susanto




 Environmental pollution that can cause atmospheric corrosion is the exhaust gas (exhaust fumes) generated from operating the palm oil industry. This atmospheric corrosion will reduce the volume and material mass of a machine component, so that if it reaches certain conditions the strength of the material will result in failure of industrial machine components. The corrosion rate of the construction steel can be measured using the weight loss method according to the ASTM G-50 standard and the ASTM G-1 standard. The research was conducted for one year and data collection was taken every month, the research location was at PT Agro Sinergi Nusantara Batee Puteh. The results of the study, the highest corrosion rate occurred in strip steel reaching 0.57 mpy in October and the lowest corrosion rate occurred for angled steel in September and cylindrical steel in May with a corrosion rate of 0.06 mpy.


Keywords atmospheric corrosion, ASTM G-50, ASTM G-1, PT. KTS

Full Text:



J. Trethewey, K. R., Chambedain, Korosi untuk Mahasiswa dan rekayasawan. Jakarta: Gramedia Pustaka Utama, 1991.

H. Susanto, M. Ridha, and S. Huzni, “Fatigue Correstion Behavious of AISI 304 Stainles Steel in 3.5% NaCl Solution,” in Proceedings of The Annual International Conference, Syiah Kuala University-Life Sciences & Engineering Chapter, 2012, vol. 2, no. 2.

F. M.G, Corrosion Engineering, 3rd editio. New York: McGraw-Hill, 1987.

Agung, ““Pengaruh Korosivitas Lingkungan Atmosferik,” 2004.

H. Susanto, M. Ridha, and S. Huzni, “Perilaku Lelah Baja Tahan Karat AISI 304 Dalam Lingkungan Korosif,” J. Tek. Mesin Pascasarj. Univ. Syiah Kuala Aceh, vol. 1, pp. 1–10, 2012.

J. Supardi, “Analisa Tingkat Korosi Atmosferik Pada Baja Struktural Dikawasan Aceh Barat dan Nagan Raya,” J. Mekanova Mek. Inov. dan Teknol., vol. 1, no. 1, 2015.

A. Handbook, Corrosion: Fundatmentals, Testing, and Protection, Volume 13A. ASM International, 2003.

H. Susanto, J. Supardi, M. Ridha, S. Huzni, and S. Fonna, “Laju Korosi Atmosferik Kawasan Pesisir dan Rural Di Kabupaten Aceh Barat Pasca Tsunami 2004,” J. Mekanova Mek. Inov. dan Teknol., vol. 2, no. 2, 2016.

J. Supardi and H. Susanto, “Analysis of Weight Loss Rates in Structural Steel Caused by Atmospheric Corrosion Based on the Distance from Coastlines Using Weight Loss Method,” in Seminar Nasional Tahunan Teknik Mesin (SNTTM) XVIII, 2019, p. 128, [Online]. Available:

H. Susanto, S. Huzni, and S. Fonna, “Corrosion of Reinforced Concrete Structures Submerged by the 2004 Tsunami in West Aceh, Indonesia,” Int. J. Corros., vol. 2018, 2018, doi: 10.1155/2018/4318434.

H. Susanto, J. Supardi, and S. Fonna, “Degradation of reinforced concrete corrosion on coast after the 2004 tsunami,” J. Corros. Sci. Eng., vol. 22, 2019.

H. Susanto, M. Ridha, S. Huzni, and S. Fonna, “Korosi Infrastruktur Beton Bertulang di Kabupaten Aceh Barat Pasca Tsunami 2004,” 2015.

H. Susanto, “Perilaku Kekuatan Lelah Baja Tahan Karat AISI 304 dalam Lingkungan Air Laut Buatan,” Tesis, Pasca Sarjana Universitas Syiah Kuala, Banda Aceh, 2012.

A. International, ASM Handbook. Volume 13A. Corrosion: fundatmentals, testing, and protection. . USA: ASM international.

A. Standards, ASTM G 50 – 76 ASTM Standards, Vol 03.02, Standard Practice for Conducting Atmospheric Corrosion Tests on Metals. 1997.

A. Standards, ASTM G-1 – 03 ASTM Standards, Vol 03.02, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. 1999.



  • There are currently no refbacks.