Variasi beban terhadap performansi mesin otto menggunakan rem cakram: Skala Laboratorium

Zufri Hasrudy Siregar, Andri Ramadhan, Donni Silaban, Refiza Refiza

Abstract


Also known as the most commonly used gasoline engine, disc brakes are an important component of the Otto engine's braking system that can affect the safety and efficiency of the vehicle. This study aims to analyze the variation of load on the performance of Otto machines using disc brakes on a laboratory scale where most of the research was carried out in less representative environments, such as computer simulations or complex field testing. The lack of studies on a laboratory scale that carefully account for load variations leaves a significant knowledge gap. The test parameters are the calculation of torque, power and Break Mean Effective Pressure (BMEP). From this study, it was found that at a load of 0.125 kg the lowest torque was 0.24525 N.m and the highest torque was 0.82404 N.m at a load of 0.420 kg. Then with a load of 0.125 kg the lowest power output is 0.64173 N.m and the highest power at a load of 0.420 kg is 2.15623 KW. Bmeep will increase when the load applied is greater at 0.125 kg resulting in the lowest bmeep being 2.78287 N.m and the highest bmeep at 0.420 kg load is 9.35052 N.m


Full Text:

PDF

References


O. K. Demirci, A. Uyumaz, S. Saridemir, and C. Cinar, “Performance and emission characteristics of a miller cycle engine,” Int. J. Automot. Eng. Technol., vol. 7, no. 3, pp. 107–116, 2018, doi: https://doi.org/10.18245/ijaet.486408.

R. Y. Dahham, H. Wei, and J. Pan, “Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges,” Energies, vol. 15, no. 17, pp. 1–60, 2022, doi: 10.3390/en15176222.

G. Piccitto, M. Campisi, and D. Rossini, “The Ising critical quantum Otto engine,” New J. Phys., vol. 24, no. 10, pp. 1–15, 2022, doi: 10.1088/1367-2630/ac963b.

F. Orecchini, A. Santiangeli, F. Zuccari, A. Alessandrini, F. Cignini, and F. Ortenzi, “Real drive truth test of the toyota yaris hybrid 2020 and energy analysis comparison with the 2017 model,” Energies, vol. 14, no. 23, 2021, doi: 10.3390/en14238032.

A. B. Bhane, S. M. Salodkar, and H. B. Ramani, “Braking System Approaching towards the Betterment and It’s Consequences,” Int. Res. J. Adv. Sci. Hub, vol. 2, no. Special Issue ICAET 11S, pp. 64–70, 2020, doi: 10.47392/irjash.2020.236.

J. Abutu, S. A. Lawal, M. B. Ndaliman, R. A. Lafia-Araga, O. Adedipe, and I. A. Choudhury, “Production and characterization of brake pad developed from coconut shell reinforcement material using central composite design,” SN Appl. Sci., vol. 1, no. 1, pp. 1–16, 2019, doi: 10.1007/s42452-018-0084-x.

F. Alanazi, “Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation,” Appl. Sci., vol. 13, no. 10, 2023, doi: 10.3390/app13106016.

D. Wahyu, “Uji Kinerja mesin fiat 4-tak dengan Kapasitas 1.100cc menggunakan automotive engine test bed T101D,” J. Tek. Mesin ITP, vol. 9, no. 2, pp. 2–11, 2019, doi: 10.21063/jtm.2019.v9.i2.74-83.

M. Taufiqurrahman, A. Raharjo, A. Faizdaffa Hakim, D. Prasetyo, and T. Jaya Saputra, “Analisis Mekanik Dan Termal Piston Mesin Pembakaran Dalam Menggunakan Software Ansys 2023,” J. Tek. Mesin, Ind. Elektro Dan Inform., vol. 2, no. 3, pp. 143–154, 2023, doi: https://doi.org/10.55606/jtmei.v2i3 ANALISIS.

I. Indriyani, Z. H. Siregar, A. Apollo, and M. Andika, “Uji kinerja mesin bensin genset dengan campuran bahan bakar RON 90 dan 92 dengan mempergunakan Rem Cakram,” J. Mekanova, vol. 9, no. 1, pp. 242–250, 2023, doi: https://doi.org/10.35308/jmkn.v9i1.7588.

W. Wei and H. M. Skye, “Residential net-zero energy buildings: Review and perspective,” Renew. Sustain. Energy Rev., vol. 142, no. March, p. 110859, 2021, doi: 10.1016/j.rser.2021.110859.

Z. H. Siregar, I. Indriyani, P. Da Silva, A. Maulana, and D. Sarwedi, “Variasi campuran ethanol pada bahan bakar RON 95 dan RON 90 di mesin motor 4 langkah,” Instrumentasi, vol. 46, no. 1, p. 73, 2022, doi: 10.31153/instrumentasi.v46i1.296.

D. Barman and B. R. Majhi, “Constructing an entangled Unruh Otto engine and its efficiency,” J. High Energy Phys., vol. 2022, no. 5, pp. 1–43, 2022, doi: 10.1007/JHEP05(2022)046.

F. J. Peña, O. Negrete, N. Cortés, and P. Vargas, “Otto engine: Classical and quantum approach,” Entropy, vol. 22, no. 7, pp. 1–11, 2020, doi: 10.3390/e22070755.

Z. Smith, P. S. Pal, and S. Deffner, “Endoreversible Otto Engines at Maximal Power,” J. Non-Equilibrium Thermodyn., vol. 45, no. 3, pp. 305–310, 2020, doi: 10.1515/jnet-2020-0039.

R.Jeniston, S. S. Prasath, D.Jasmine, B. S. Vinisha, and R.Pathmas, “Characterization of Biodiesel for Use as a Fuel in Compression Ignition Engine R.Jeniston,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 13, no. 3, pp. 1749–1764, 2024, doi: 10.15680/IJIRSET.2024.1303067.

A. Saputra and R. Munandar, “Analisis Dinamik Rem Cakram (Disc Brake) atau Rem Piringan pada Sepeda Motor Supra X 125,” Teknobiz J. Ilm. Progr. Stud. Magister Tek. Mesin, vol. 12, no. 2, pp. 83–90, 2022, doi: 10.35814/teknobiz.v12i2.3612.

A. Saputra, R. D. Anjani, and Aripin, “Perhitungan Rem Cakram Depan Pada Sepeda Mtb Wimcycle Hotroad Aldo,” J. Ilm. Wahana Pendidik., vol. 8, no. July, pp. 224–229, 2022, doi: https://doi.org/10.5281/zenodo.6831406.

S. Karupusamy et al., “Torque control-based induction motor speed control using Anticipating Power Impulse Technique,” Int. J. Adv. Manuf. Technol., 2023, doi: 10.1007/s00170-023-10893-5.

J. Tavoosi et al., “A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators,” Ain Shams Eng. J., vol. 13, no. 2, p. 101564, 2022, doi: 10.1016/j.asej.2021.08.007.




DOI: https://doi.org/10.35308/jmkn.v10i1.9371

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.