Prediksi Suhu Permukaan Berbasis Artificial Intelligence Untuk Adaptasi Perubahan Iklim Pada Pertanian
Abstract
Full Text:
PDFReferences
A. Febrianto and A. W. Sejati, “Prediksi Suhu Permukaan Lahan dengan Memanfaatkan Teknologi Citra Multi Temporal dan Permodelan Cellular Automata di DKI Jakarta,” Geo-Image, vol. 10, no. 1, pp. 16–30, 2021, http://journal.unnes.ac.id/sju/index.php/geoimage
Nurhanif, Y. Away, and M. S. Surbakti, “Performance Analysis of Database Synchronization on DBMS MySQL and Oracle by Using Event-Driven and Time-Driven Data for Weather Monitoring,” J. Aceh Phys. Soc., vol. 10, no. 4, pp. 107–112, 2021, doi: 10.24815/jacps.v10i4.20084.
H. Imanian, J. H. Cobo, P. Payeur, H. Shirkhani, and A. Mohammadian, “A Comprehensive Study of Artificial Intelligence Applications for Soil Temperature Prediction in Ordinary Climate Conditions and Extremely Hot Events,” Sustain., vol. 14, no. 8065, pp. 2–25, 2022, doi: 10.3390/su14138065.
S. Yadav, R. Kumar, and P. Singh, “Application of Artificial Neural Networks for Accurate Temperature Prediction in Tropical Agriculture,” Sustainability, vol. 17, no. 5, p. 1812, 2024, doi: 10.3390/su17051812.
A. Khosravi, S. Nahavandi, and D. Creighton, “Hybrid Wavelet-CANFIS Model for Soil and Air Temperature Prediction,” Comput. Electron. Agric., vol. 185, p. 106190, 2021, doi: 10.1016/j.compag.2021.106190.
P. C. Nayak and K. P. Sudheer, “Hybrid Wavelet-Based Soft Computing Models for Temperature Forecasting,” J. Hydrol., vol. 595, p. 125959, 2021, doi: 10.1016/j.jhydrol.2021.125959.
M. Hidayat, “Pemanfaatan Artificial Intelligence untuk Prediksi Iklim di Papua,” J. Syntax Admiration, vol. 3, no. 8, pp. 1405–1416, 2022, doi: 10.46799/jsa.v3i8.1488.
R. Suryawan and D. Prasetyo, “Penerapan IoT dan LSTM dalam Prediksi Kelembapan Tanah untuk Pertanian Presisi,” Hybrid J. Tek. Inform., vol. 7, no. 1, pp. 45–56, 2023, doi: 10.47432/hybrid.v7i1.1904.
Nurhanif, Y. Yanti, Baihaqi, and G. Maghfirah, “Sistem Monitoring Dan Kendali Suhu Ruangan Budidaya Jamur Tiram Berbasis Internet Of Things,” ELKOM (Jurnal Elektron. dan Komputer), vol. 18, no. 1, pp. 1–14, 2025, doi: https://doi.org/10.51903/1sp20p64.
F. and A. O. of the U. Nations, Climate-Smart Agriculture: Policies, Practices and Financing for Food Security, Adaptation and Mitigation. FAO, 2020.
H. Li, J. Wang, and Y. Zhao, “Prediction of Land Surface Temperature Using Bi-LSTM and Remote Sensing Data,” Land, vol. 11, no. 8, p. 1164, 2022, doi: 10.3390/land11081164.
F. Kratzert, D. Klotz, and M. Herrnegger, “Machine Learning in Weather and Climate Forecasting: A State-of-the-Art Review,” Environ. Model. Softw., vol. 134, p. 104873, 2020, doi: 10.1016/j.envsoft.2020.104873.
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.