Pengaruh Cross Feed dan Ukuran Grit Silicon Carbide Wheel Grinder Terhadap Respon Getaran dan Kekasaran Permukaan Untuk Material Baja (Hardened Tool Steel) OCR12VM

Fachrizal Cesar Putra, Yuliadi Erdani, Bahdin Ahad Badia, La Ode Abdul Gamsir

Abstract


Penelitian ini bertujuan mengetahui seberapa besar pengaruh crossfeed dan ukuran grit baru gerinda silicon carbide terhadap amplitudo getaran dengan nilai kekasaran permukaan yang terjadi saat proses permesinan. Material pengujian menggunakan hardened tool steel OCR12VM. Pengujian dilakukan menggunakan mesin surface grinding KGS818AH dengan variabel proses ukuran grit batu gerinda, putaran spindel, kecepatan makan, kedalaman potong serta cross feed. Pemilihan jenis abrasive dan parameter proses (crossfeed dan ukuran grit batu gerinda) dapat memberikan dampak pada meningkatnya amplitudo getaran dan kekasaran permukaan. Hasil dari penelitian ini adalah semakin halus grit batu gerinda maka amplitudo getaran dan kekasaran permukaan yang didapat akan lebih rendah dan semakin besar crossfeed maka amplitudo getaran dan kekasaran permukaan akan meningkat.


Full Text:

PDF

References


DAFTAR PUSTAKA

Anand, P.S.P., dkk. 2017. Investigation on grindability of medical implant material using a silicon carbide wheel with different cooling conditions. North American Manufacturing Research Conference.

Anam, C. 2016. Studi eksperimental pengaruh parameter cross feed pada proses pemesinan gerinda datar terhadap getaran dan kekasaran permukaan pada material hardened tool steel SKD11. Institut Teknologi Sepuluh November.

Argawal, S., dkk. 2007. Eksperimental inverstigation of surface damage formation and material removal mechanisms in SiC grinding. International Journal of Machine Tools and Manufacture.

Argawal, S., dkk. 2017. An Analytical Chip Thickness Model for Performance Assessment in Silicon Carbide Grinding. North American Manufacturing Research Conference.

Artika, K.D., dan Suhardjono. 2015. Studi Eksperimental Pengaruh Longitudinal Feed Pada Proses Gerinda Datar Terhadap Getaran Dan Kekasaran Permukaan Pada Material Hardened Tool Steel OCR12VM.

Cao, J., dkk. 2017. Ductile-brittle transition behavior in the ultrasonic vibration-assisted internal grinding of silicon carbide ceramics. The International Journal of Advanced Manufacturing Technology.

Demir, H., dkk. 2010. An Investigation into the Influences of Grain Size and Grinding Parameters on Surface Roughness and Grinding Forces when Grinding. Journal international of Mechanical Engineering.

Fachrizal, dkk. 2019. The Effect of Overlap Ratio and Silicon Carbide Wheel Grinder on Vibration Amplitude and Surface Roughness for Material OCR12VM.

Guo, B., dkk. 2011. Ultrasonic vibration-assisted grinding of microstructured surfaces on silicon carbide ceramic materials. Journal of Engineering Manufacture.

Koenigsberger F, Tlusty J. 1970. Machine Tool Structures. Volume 1. New York: Pergamon Press.

Mobley R.K. 1999. Vibration Fundamentals. USA : Butterworth-Heinemann.

Padda, A.S., dkk. 2015. Effect of Varying Surface Grinding Parameters on the Surface Roughness of Stainless Steel. International Journal of Engineering Research and General Science.

Rochim T. 1993. Teori dan Teknologi Proses Pemesinan. Institut Teknologi Bandung.

Rochim T. 2007. Proses Gerinda. Institut Teknologi Bandung.

Schey J. Introduction to Manufacturing Processes. New York: McGraw Hill. 2000.

Venu, A.G., dkk. 2003. Selection of optimum conditions for maximum material removal rate with surface finish and damage as constraints in SiC grinding. International Journal of Machine Tools and Manufacture.

Vitor, A.M., dkk. 2017. Surface Grinding of Ti-6Al-4V Alloy with SiC Abrasive Wheel at Various Cutting Conditions. North American Manufacturing Research Conference.

Wu, C., dkk. 2017. Surface roughness modelling for grinding of Silicon Carbide ceramics considering co-existence of brittleness and ductility. International journal of Mechanical Sciences.

Zaveri K. 1984. Modal Analysis of Large Structures – Multiple Exciter System. 1st edition. Bruel & Kjaer.




DOI: https://doi.org/10.35308/jmkn.v10i1.9385

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.