Aplikasi Prediksi Gangguan Tidur Berbasis Gaya Hidup Menggunakan Teknik Data Mining
Abstract
Gangguan tidur seperti insomnia dan sleep apnea merupakan permasalahan kesehatan yang berdampak pada penurunan kualitas hidup dan produktivitas individu. Sayangnya, banyak penderita yang tidak menyadari gangguan ini secara dini. Penelitian ini bertujuan membangun sistem prediksi gangguan tidur berbasis machine learning dengan pendekatan ensemble learning menggunakan kombinasi algoritma Random Forest dan XGBoost melalui metode soft voting. Dataset yang digunakan mencakup variabel gaya hidup dan kesehatan seperti usia, jenis kelamin, tekanan darah, detak jantung, durasi tidur, aktivitas fisik, tingkat stres, dan kualitas tidur. Data dianalisis dan dilatih menggunakan Google Colab, kemudian diimplementasikan dalam aplikasi berbasis web menggunakan Streamlit. Hasil pengujian menunjukkan bahwa model ensemble memberikan performa prediksi yang sangat baik dengan akurasi sebesar 96%, serta precision dan recall tinggi pada semua kelas. Aplikasi ini juga dilengkapi fitur rekomendasi berbasis hasil prediksi dan kemampuan ekspor laporan ke format PDF. Temuan ini menunjukkan bahwa integrasi kecerdasan buatan dalam bentuk aplikasi dapat membantu masyarakat mengenali gangguan tidur secara dini dan mengambil langkah preventif secara mandiri.
Kata Kunci: Gangguan Tidur, Ensemble Learning, Random Forest, XGBoost, Streamlit
Full Text:
PDFReferences
D. A. Kalmbach and et al., “The impact of sleep disorder symptoms on health and functioning in military service members,” Sleep Heal., vol. 11, no. 2, pp. 172–180, 2022, [Online]. Available: https://doi.org/10.1016/j.sleh.2022.01.007
L. M. Grandner, “Sleep, health, and society,” Sleep Med. Clin., vol. 12, no. 1, pp. 1–22, 2017, [Online]. Available: https://doi.org/10.1016/j.jsmc.2016.10.012
W. H. Organization, “WHO technical brief: Mental health and COVID-19,” 2022. [Online]. Available: https://www.who.int/publications/i/item/9789240057201
K. Irish, J. Kline, and D. Rothenberger, “Psychological stress, sleep, and health,” Neurosci. Biobehav. Rev., vol. 99, pp. 210–219, 2019, [Online]. Available: https://doi.org/10.1016/j.neubiorev.2019.01.021
R. Sujatha and T. S. Kumar, “Early detection of sleep disorder using machine learning techniques,” in Materials Today: Proceedings, 2021, pp. 4680–4684. [Online]. Available: https://doi.org/10.1016/j.matpr.2020.11.664
S. Khandoker, A. Palaniswami, and C. Karmakar, “Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings,” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 1, pp. 37–48, 2009, [Online]. Available: https://ieeexplore.ieee.org/document/4738485
A. Saeed, N. Arshad, and A. Javed, “Sleep disorder detection using Random Forest classifier,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 4, pp. 456–461, 2020, [Online]. Available: https://thesai.org/Downloads/Volume11No4/Paper_60-Sleep_Disorder_Detection.pdf
Y. Zhang, Y. Jiang, and L. Wang, “Ensemble learning methods for classifying healthcare data: A case study for sleep disorder prediction,” Comput. Biol. Med., vol. 120, p. 103744, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482519310297
A. Mishra and S. Sharma, “Improving disease prediction using ensemble machine learning models: A case study on sleep disorders,” J. Ambient Intell. Humaniz. Comput., vol. 12, pp. 10189–10201, 2021, [Online]. Available: https://link.springer.com/article/10.1007/s12652-020-02654-2
J. Choi, H. Lee, and K. Lee, “Sleep apnea detection using deep learning on single-channel respiratory signals,” Sensors, vol. 21, no. 10, p. 3418, 2021, [Online]. Available: https://www.mdpi.com/1424-8220/21/10/3418
A. Alzu’bi, R. Rawashdeh, and M. Al Bataineh, “Sleep quality assessment using machine learning techniques,” Heal. Inf. Sci. Syst., vol. 9, no. 1, pp. 1–9, 2021, [Online]. Available: https://hissjournal.biomedcentral.com/articles/10.1007/s13755-021-00134-3
F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011, [Online]. Available: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794. [Online]. Available: https://dl.acm.org/doi/10.1145/2939672.2939785
S. Inc., “Streamlit Documentation.” 2024. [Online]. Available: https://docs.streamlit.io/
K. Inc., “Sleep Health and Lifestyle Dataset.” 2024. [Online]. Available: https://www.kaggle.com/datasets/kandij/sleep-health-and-lifestyle-dataset
S. Raschka, “Model evaluation, model selection, and algorithm selection in machine learning,” arXiv Prepr., vol. arXiv:1811, 2018, [Online]. Available: https://arxiv.org/abs/1811.12808
T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8, pp. 861–874, 2006, [Online]. Available: https://doi.org/10.1016/j.patrec.2005.10.010
DOI: https://doi.org/10.35308/jti.v4i2.13099
Jurnal Teknologi Informasi
e-ISSN: 2829-8934 I DOI: 10.35308
Jl. Alue Peunyareng, Ujong Tanoh Darat, Meureubo, Kabupaten Aceh Barat, Aceh 23681, Indonesia
(0655) 7110535
is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License







