Analisis Peramalan Permintaan Omeprazole Injeksi di Rumah Sakit XYZ

Nur Irhamni Sabrina, Okpri Meila, Dhea Nur Fadhilah, Syaubari Syaubari

Abstract


Inaccurate drug inventory planning can lead to stock shortages or excess inventory, which negatively affects the efficiency of hospital services. One drug with highly fluctuating demand is Omeprazole injection 40 mg at XYZ Hospital. This study aims to forecast the demand for Omeprazole injection 40 mg using time series forecasting methods, namely Single Moving Average, 2-month Moving Average, and 3-month Moving Average. This research employed a descriptive quantitative approach using historical demand data from January to September as the basis for forecasting demand for the period of October to December. Forecast accuracy was evaluated using Mean Absolute Deviation (MAD), Mean Squared Error (MSE), and Mean Absolute Percentage Error (MAPE). The results indicate that the Single Moving Average method produced the lowest MAD value of 91.33 and MSE value of 9,948.67, making it the most effective method in minimizing absolute and squared forecasting errors. The 2-month Moving Average method resulted in the lowest MAPE value of 57.91% but showed the highest MAD and MSE values, while the 3-month Moving Average method demonstrated more moderate and stable performance with error values between the other two methods. The high MAPE values across all methods indicate substantial demand variability; therefore, MAD and MSE are considered more relevant indicators for selecting the appropriate forecasting method. The findings of this study are expected to support more effective and efficient decision-making in planning the procurement of Omeprazole injection 40 mg at XYZ Hospital.


Full Text:

PDF

References


Abu Zwaida, T., Pham, C., & Beauregard, Y. (2021). Optimization of Inventory Management to Prevent Drug Shortages in the Hospital Supply Chain. Applied Sciences, 11(6), 2726. https://doi.org/10.3390/app11062726

Aditya, T., Jaipuria, S., & Kumar Dadabada, P. (2025). A Review of Methods for Long‐Term Electric Load Forecasting. Journal of Forecasting, 44(4), 1403–1423. https://doi.org/10.1002/for.3248

Aji, B. G., Sondawa, D. C. A., Anindika, F. A., & Januarita, D. (2022). Analisis Peramalan Obat Menggunakan Metode Simple Moving Average, Weighted Moving Average, Dan Exponential Smoothing. JURIKOM (Jurnal Riset Komputer), 9(4), 959. https://doi.org/10.30865/jurikom.v9i4.4454

Anichebe, I. B., Ekwue, A. O., & Obe, E. S. (2024). Time-series trendline and curve-fitting-based approach to short-term electricity demand forecasting. International Journal of Applied Power Engineering (IJAPE), 13(1), 81. https://doi.org/10.11591/ijape.v13.i1.pp81-90

Aripiyanto, S., Khairani, D. H. A., & Hartono, A. (2024). CO2 Emission Forecasting in Indonesia Until 2030: Evaluation of ETS Smoothing Prediction Models and Their Implications for Global Climate Change Mitigation. Journal of Applied Data Sciences, 5(1), 46–55. https://doi.org/10.47738/jads.v5i1.154

Bayhaqi, A., & Kurniawan, R. (2024). Using Fuzzy Tsukamoto Method In Forecasting The Amount Medication Requrementsat In The Hospital. Sinkron, 8(3), 1987–1996. https://doi.org/10.33395/sinkron.v8i3.13926

Bilal, A. I., Bititci, U. S., & Fenta, T. G. (2024). Challenges and the Way Forward in Demand-Forecasting Practices within the Ethiopian Public Pharmaceutical Supply Chain. Pharmacy, 12(3), 86. https://doi.org/10.3390/pharmacy12030086

Burinskiene, A. (2022). Forecasting Model: The Case of the Pharmaceutical Retail. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.582186

Dhaka, S. S., Urmila, & Poolsingh, D. (2023). Comparative Analysis of Price Forecasting Models for Garlic (Allium sativum L.) in Kota District of Rajasthan, India. Research on World Agricultural Economy, 4(4), 10–22. https://doi.org/10.36956/rwae.v4i4.915

Fan, W., Zhang, R., He, H., Hou, S., & Tan, Y. (2024). A short-term price prediction-based trading strategy. PLOS ONE, 19(3), e0294970. https://doi.org/10.1371/journal.pone.0294970

Furqon, M. ‘Ariful, Fahlefi, E. R., & Adiwijaya, N. O. (2024). Drug Sales Forecasting Using Single Exponential Smoothing (Case Study: NDM Pharmacy) (pp. 25–31). https://doi.org/10.2991/978-94-6463-445-7_4

George, S., & Elrashid, S. (2023). Inventory Management and Pharmaceutical Supply Chain Performance of Hospital Pharmacies in Bahrain: A Structural Equation Modeling Approach. Sage Open, 13(1). https://doi.org/10.1177/21582440221149717

Haviluddin, H., & Alfred, R. (2023). Multi-step CNN forecasting for COVID-19 multivariate time-series. International Journal of Advances in Intelligent Informatics, 9(2), 176. https://doi.org/10.26555/ijain.v9i2.1080

Hendi, H. G., Ibrahim, M. H., Shaheen, M. E. M., & Farrag, M. H. (2025). Multi-Time Series Forecasting for Regional Emergency Call Demand. International Journal of Healthcare Information Systems and Informatics, 20(1), 1–15. https://doi.org/10.4018/IJHISI.375011

Izzati, I., Sriwana, I. K., & Martini, S. (2024). Drug forecasting and supply model design using Artificial Neural Network (ANN) and Continuous Review (r, q) to minimize total supply cost. SINERGI, 28(2), 219. https://doi.org/10.22441/sinergi.2024.2.002

Kabera, J. C., & Mukanyangezi, M. F. (2024). Influence of inventory management practices on the availability of emergency obstetric drugs in Rwandan public hospitals: a case of Rwanda Southern Province. BMC Health Services Research, 24(1), 14. https://doi.org/10.1186/s12913-023-10459-x

Kasmi, M., Aman, A., Asriany, A., Angriawan, R., Karma, K., Radi, A., Ilham, I., Yuliastuti, H., & Sulkifli, S. (2023). Predictive Analysis of the Ornamental Angelfish Export Market Demand: An Application of the Least Square Method. Ingénierie Des Systèmes d Information, 28(3), 621–631. https://doi.org/10.18280/isi.280310

Nadya Amalia Yulianti, Dian Cahyawati, & Eka Susanti. (2023). Penggunaan Metode Double Exponential Smoothing pada Peramalan Kasus COVID-19 di Provinsi Sumatera Selatan. STATISTIKA Journal of Theoretical Statistics and Its Applications, 23(1), 19–28. https://doi.org/10.29313/statistika.v23i1.2108

Nurfi, I., Nasution, Y. S. J., & Hasibuan, N. F. A. (2024). Analysis of Regional Asset Management Information System Application For Medan City Library Assets and Archive Services. Ilomata International Journal of Management, 5(4), 1100–1121. https://doi.org/10.61194/ijjm.v5i4.1260

Pramodya Utami, A. A. I. R., & Mandala, K. (2024). Analisis Perencanaan Produksi Agregat pada CV. Pelangi Rex’s di Denpasar. Ekonomis: Journal of Economics and Business, 8(1), 282. https://doi.org/10.33087/ekonomis.v8i1.1337

Yawara, P., Supattananon, N., Siwapornrak, P., & Akarrungruangkul, R. (2023). Purchasing planning for pharmaceuticals inventory: a case study of drug warehouse in hospital. Indonesian Journal of Electrical Engineering and Computer Science, 31(3), 1496. https://doi.org/10.11591/ijeecs.v31.i3.pp1496-1506

Yondri, S., Meidelfi, D., Lestari, T., Sukma, F., & Mutia, I. S. (2024). Comparative analysis of the least squares method and double moving average technique for forecasting product inventory. Teknomekanik, 7(1), 74–84. https://doi.org/10.24036/teknomekanik.v7i1.29672

Zannah, N., Irawati, N., & Andriyani, S. (2023). IMPLEMENTATION OF SINGLE EXPONENTIAL SMOOTHING METHOD DEMAND FOR HERBAL MEDICINE TO DC RIA SARI ANGGRIANI. JURTEKSI (Jurnal Teknologi Dan Sistem Informasi), 10(1), 29–36. https://doi.org/10.33330/jurteksi.v10i1.2544




DOI: https://doi.org/10.35308/invasi.v3i1.14613

DOI (PDF): https://doi.org/10.35308/invasi.v3i1.14613.g6113

Refbacks

  • There are currently no refbacks.


Jurnal Industri dan Inovasi (INVASI)

Universitas Teuku Umar, Jalan Alue Peunyareng, Ujong Tanoh Darat, Meureubo, Aceh Barat, Aceh. Kode Pos 23615