Forecasting the export value of indonesian tuna, skipjack, and mackerel tuna using Autoregressive Integrated Moving Average (ARIMA)

Cindiah Syahnaz, Slamet Widodo, Nabila Zannuba Rahman

Abstract


This study aims to build a statistically valid forecasting model for the export value of Tuna, Skipjack, and Mackerel Tuna in Indonesia, considering that the ability to project future export performance is crucial for the strategic planning of both government and industry. Using annual time-series data from the period 2005 to 2023 sourced from the Central Bureau of Statistics (BPS) and the Ministry of Marine Affairs and Fisheries (KKP), this study applies the Autoregressive Integrated Moving Average (ARIMA) Box-Jenkins methodology. The entire analysis process, from stationary testing to forecasting, was conducted using Minitab 22 software. After a series of rigorous identification, estimation, and diagnostic checking stages, the ARIMA (0,1,2) model was identified as the best fit. This selection was based on its superiority across various criteria: having the lowest Akaike's Information Criterion (AIC) and Bayesian Information Criterion (BIC) values, the best out-of-sample forecasting accuracy (MAPE = 13.15%), a significant MA(2) parameter (p-value = 0.020), and valid residuals based on the Ljung-Box test (p-value = 0.663). The forecast for the 2024-2026 period shows a sustained upward trend in export value, with a projection of reaching USD 991.65 million by 2026. These findings provide a quantitative basis for the government in setting export targets and for the industry in planning investments, particularly in the development of value-added products to meet global market demand.


Full Text:

PDF

References


Ambari, M. (2024). Masih Besarkah Potensi Perikanan Tuna di Indonesia? Mongabay.Co.Id, 1–13. https://mongabay.co.id/2024/07/16/masih-besarkah-potensi-perikanan-tuna-di-indonesia/

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting And Control (5th ed.). John Wiley & Sons.

BPS. (2025). Produksi Perikanan Tangkap di Laut Menurut Komoditas Utama pada Tahun 2020-2023 (pp. 1–9). Badan Pusat Statistik. https://www.bps.go.id/id/statistics-table/2/MTUxNSMy/produksi-perikanan-tangkap-di-laut-menurut-komoditas-utama.html

Hartanto, T. R., Suharno, & Burhanuddin. (2021). Daya saing ekspor ikan tuna-cakalang-tongkol indonesia di pasar Amerika Serikat. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(2), 227–235. https://doi.org/10.17844/jphpi.v24i2.36075

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed). In OTexts: Melbourne, Australia. https://otexts.com/fpp3/

KKP. (2009). Kelautan dan Perikanan dalam Angka 2009 (Marine and Fisheries in Figures 2009). In Pusat Data, Statistik dan Informasi (Vol. 25, Issue 12). http://statistik.kkp.go.id/index.php/arsip/file/8/kpda09.pdf/

KKP. (2013). Kelautan dan Perikanan dalam Angka 2012 (Marine and Fisheries in Figures 2012). In Pusat Data Statistik dan Informasi, Sekretariat Jenderal, Kementerian Kelautan dan Perikanan.

KKP. (2018). Kelautan dan Perikanan dalam Angka Tahun 2018 (Marine and Fisheries in Figures 2018). In Pusat Data, Statistik dan Informasi.

KKP. (2024). Kelautan dan Perikanan dalam Angka Tahun 2024 (Marine and Fisheries in Figures 2024). In Pusat Data, Statistik dan Informasi (Vol. 11). Pusat Data Statistik dan Informasi, Sekretariat Jenderal, Kementerian Kelautan dan Perikanan. https://perpustakaan.kkp.go.id/knowledgerepository/index.php?p=show_detail&id=1074693

Kushendarto, S., Fattah, M., Sari, M., & Farizi, W. Al. (2018). Analisis kontribusi tuna cakalang tongkol (TCT) terhadap pendapaptan domestik regional bruto kabupaten Tulungagung. Economic and Social of Fisheries and Marine, 5(2), 167–172. https://doi.org/10.21776/ub.ecsofim.2018.005.02.05

Mulyani, R., Sari, Y. P., & Sumantriyadi. (2022). Forecasting produksi perikanan budidaya di Kota Palembang dengan metode autoregressive integrated moving average (ARIMA). Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 19(2), 163–174. https://doi.org/10.31851/sainmatika.v19i2.9164

Permatasari, N., Hafiyusholeh, M., & Purwanto, S. (2020). Forecasting Hasil Produksi Perikanan Budidaya Laut Menggunakan ARIMA. Jurnal Mahasiswa Matematika ALGEBRA, 1(1), 73–80. https://www.academia.edu/download/86436015/329047547.pdf

Purnamasari, M., & Rizkiyah, N. D. (2023). Peramalan jumlah ekspor produk ikan, krustasea, dan invertebrata air indonesia dengan metode autoregressive integrated moving averages (ARIMA). Jurnal Penelitian dan Aplikasi Sistem Dan Teknik Industri (PASTI), 17(2), 249–258. https://doi.org/10.22441/pasti.2023.v17i2.010

Selvaraj, J. J., Arunachalam, V., Coronado-Franco, K. V., Romero-Orjuela, L. V., & Ramírez-Yara, Y. N. (2020). Time-series modeling of fishery landings in the Colombian Pacific Ocean using an ARIMA model. Regional Studies in Marine Science, 39, 101477. https://doi.org/10.1016/j.rsma.2020.101477

Syahnaz, C., Brillyantina, S., Agustina, J., & Slamet, A. H. H. (2025). Pengaruh jumlah produksi tuna, harga ekspor tuna, dan nilai tukar dolar terhadap volume ekspor Tuna Indonesia. Jurnal Agribisnis Unisi, 14(1), 26–37. https://doi.org/10.32520/agribisnis.v14i1.4082

Syaifulloh, A. (2024). Peramalan Jumlah Produksi Perikanan Tangkap di Perairan Bawean menggunakan ARIMA. Universitas Islam Negeri Sunan Ampel. http://digilib.uinsa.ac.id/72090/

Wicaksono, B. R., Sutandi, T., & Tembo, S. (2020). Forecasting fisheries production in Indonesia. Jurnal Ekonomi & Studi Pembangunan, 21(2), 170–184. https://doi.org/10.18196/jesp.21.2.5039.




DOI: https://doi.org/10.35308/jpterpadu.v6i2.13140

Refbacks

  • There are currently no refbacks.


                                           Jurnal Perikanan Terpadu
                                e-ISSN: 2745-6587  I  DOI: 10.35308

Dept of Fisheries, Faculty of Fisheries and Marine Science, Universitas Teuku Umar
Jl. Alue Peunyareng, Ujong Tanoh Darat, Meureubo, Kabupaten Aceh Barat, Aceh 23681, Indonesia
+62 852-5555-3040 l +62 852-1871-1142 l +62 813-6017-8635
License Creative Commons is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License