Konjac Glucomannan: A Functional Dietary Fiber for Gut Health, Metabolic Regulation, and Clinical Applications – A Comprehensive Review

Nurchalisah Rustan M, Sri Wahyuni, Baihaqi Baihaqi, Rustan Massinai, Febryansyah Pagala

Abstract


This study aims to review the potential of Konjac Glucomannan (KGM) as a functional dietary fiber in improving digestive health, regulating metabolism, and its clinical applications. The focus is on KGM's benefits in weight management, glycemic control, and modulation of gut microbiota. A comprehensive literature review was conducted to examine various studies on KGM's extraction methods, structural composition, physiological effects, and clinical uses. The review also addresses KGM’s regulatory status and safety to ensure appropriate dosing standards and long-term efficacy. Results demonstrate that KGM forms a gel matrix in the gastrointestinal tract, promoting satiety, reducing glucose absorption, and influencing lipid metabolism. Additionally, KGM exhibits prebiotic properties that support beneficial gut microbiota and enhance gut barrier integrity through the production of short-chain fatty acids (SCFAs). KGM's role in improving metabolic health and digestive function highlights its potential as a promising dietary fiber. Future research should focus on optimizing KGM formulations, exploring its role in personalized nutrition based on microbiome composition, and investigating its impact on neurological and metabolic disorders. This review emphasizes the need for further clinical trials to better understand KGM's therapeutic applications and long-term effects in promoting health and preventing disease.


Keywords


Konjac glucomannan, glycemic control, gut health, prebiotic

Full Text:

PDF

References


Abotsi, E. E., Panagodage, Y., & English, M. (2024). Plant-based seafood alternatives: Current insights on the nutrition, protein-flavour interactions, and the processing of these foods. Current Research in Food Science, 9(September), 100860. https://doi.org/10.1016/j.crfs.2024.100860

ago, F. M. a day. (2016). How big data can make cities smarter. IT Pro Portal. https://doi.org/10.3945/jn.109.104638.1619

Al Manasrah, M., Kallioinen, M., Ilvesniemi, H., & Mänttäri, M. (2012). Recovery of galactoglucomannan from wood hydrolysate using regenerated cellulose ultrafiltration membranes. Bioresource Technology, 114, 375–381. https://doi.org/10.1016/j.biortech.2012.02.014

Albrecht, S., Van Muiswinkel, G. C. J., Xu, J., Schols, H. A., Voragen, A. G. J., & Gruppen, H. (2011). Enzymatic production and characterization of konjac glucomannan oligosaccharides. Journal of Agricultural and Food Chemistry, 59(23), 12658–12666. https://doi.org/10.1021/jf203091h

Alonso-Sande, M., Teijeiro-Osorio, D., Remuñán-López, C., & Alonso, M. J. (2009). Glucomannan, a promising polysaccharide for biopharmaceutical purposes. European Journal of Pharmaceutics and Biopharmaceutics, 72(2), 453–462. https://doi.org/10.1016/j.ejpb.2008.02.005

Anissa, M. N., Rahayoe, S., Harmayani, E., & Ulya, K. N. (2023). Extraction and Characterization of Glucomannan from Porang (Amorphopallus oncophyllus) with Size Variations of Porang. AgriTECH, 43(4), 328. https://doi.org/10.22146/agritech.68886

Apalowo, O. E., Adegoye, G. A., & Obuotor, T. M. (2024). Microbial-Based Bioactive Compounds to Alleviate Inflammation in Obesity. Current Issues in Molecular Biology, 46(3), 1810–1831. https://doi.org/10.3390/cimb46030119

Batterham, R. L., & Bloom, S. R. (2003). The gut hormone peptide YY regulates appetite. Annals of the New York Academy of Sciences, 994, 162–168. https://doi.org/10.1111/j.1749-6632.2003.tb03176.x

Behera, S. S., & Ray, R. C. (2016). Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. International Journal of Biological Macromolecules, 92, 942–956. https://doi.org/10.1016/j.ijbiomac.2016.07.098

Bianchetti, G., De Maio, F., Abeltino, A., Serantoni, C., Riente, A., Santarelli, G., … Maulucci, G. (2023). Unraveling the Gut Microbiome–Diet Connection: Exploring the Impact of Digital Precision and Personalized Nutrition on Microbiota Composition and Host Physiology. Nutrients, 15(18). https://doi.org/10.3390/nu15183931

Blackwood, A. D., Salter, J., Dettmar, P. W., & Chaplin, M. F. (2000). Dietary fibre, physicochemical properties and their relationship to health. Journal of The Royal Society for the Promotion of Health, 120(4), 242–247. https://doi.org/10.1177/146642400012000412

Bootz-Maoz, H., Pearl, A., Melzer, E., Malnick, S., Sharon, E., Bennet, Y., … Yissachar, N. (2022). Diet-induced modifications to human microbiome reshape colonic homeostasis in irritable bowel syndrome. Cell Reports, 41(7), 111657. https://doi.org/10.1016/j.celrep.2022.111657

Canani, R. B., Costanzo, M. Di, Leone, L., Pedata, M., Meli, R., & Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology, 17(12), 1519–1528. https://doi.org/10.3748/wjg.v17.i12.1519

Chambers, E. S., Viardot, A., Psichas, A., Morrison, D. J., Murphy, K. G., Zac-Varghese, S. E. K., … Frost, G. (2015). Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut, 64(11), 1744–1754. https://doi.org/10.1136/gutjnl-2014-307913

Chang, R., Chen, L., Qamar, M., Wen, Y., Li, L., Zhang, J., … Jafari, S. M. (2023). The bioavailability, metabolism and microbial modulation of curcumin-loaded nanodelivery systems. Advances in Colloid and Interface Science, 318(May), 102933. https://doi.org/10.1016/j.cis.2023.102933

Chen, H. L., Cheng, H. C., Wu, W. T., Liu, S. Y., & Liu, Y. J. (2008). Supplementation of Konjac Glucomannan into a Low-Fiber Chinese Diet Promoted Bowel Movement and Improved Colonic Ecology in Constipated Adults: A Placebo-Controlled, Diet-Controlled Trial. Journal of the American College of Nutrition, 27(1), 102–108. https://doi.org/10.1080/07315724.2008.10719681

Chen, W., Ma, Q., Li, Y., Wei, L., Zhang, Z., Khan, A., … Wang, C. (2025). Butyrate Supplementation Improves Intestinal Health and Growth Performance in Livestock: A Review. Biomolecules, 15(1), 1–22. https://doi.org/10.3390/biom15010085

Chey, W., & Menees, S. (2018). The gut microbiome and irritable bowel syndrome. F1000Research, 7(0), 1–10. https://doi.org/10.12688/f1000research.14592.1

Ciarlo, E., Heinonen, T., Herderschee, J., Fenwick, C., Mombelli, M., Le Roy, D., & Roger, T. (2016). Impact of the microbial derived short chain fatty acid propionate on host susceptibility to bacterial and fungal infections in vivo. Scientific Reports, 6(July), 1–15. https://doi.org/10.1038/srep37944

Connolly, M. L., Lovegrove, J. A., & Tuohy, K. M. (2010). Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. Journal of Functional Foods, 2(3), 219–224. https://doi.org/10.1016/j.jff.2010.05.001

Czajkowska, A., Czajkowski, M., Szczerbinski, L., Jurczuk, K., Reska, D., Kwedlo, W., … Kretowski, A. (2024). Exploring protein relative relations in skeletal muscle proteomic analysis for insights into insulin resistance and type 2 diabetes. Scientific Reports, 14(1), 1–20. https://doi.org/10.1038/s41598-024-68568-4

Dai, S., Jiang, F., Shah, N. P., & Corke, H. (2017). Stability and phase behavior of konjac glucomannan-milk systems. Food Hydrocolloids, 73, 30–40. https://doi.org/10.1016/j.foodhyd.2017.06.025

Davoodi, S., Al-Shargabi, M., Wood, D. A., Rukavishnikov, V. S., & Minaev, K. M. (2024). Synthetic polymers: A review of applications in drilling fluids. Petroleum Science, 21(1), 475–518. https://doi.org/10.1016/j.petsci.2023.08.015

Deehan, E. C., Yang, C., Perez-Muñoz, M. E., Nguyen, N. K., Cheng, C. C., Triador, L., … Walter, J. (2020). Precision Microbiome Modulation with Discrete Dietary Fiber Structures Directs Short-Chain Fatty Acid Production. Cell Host and Microbe, 27(3), 389-404.e6. https://doi.org/10.1016/j.chom.2020.01.006

Deng, J., Zhou, K., Feng, C., Bao, Y., Zhang, Z., Luo, W., & Li, M. (2024). Effect of konjac glucomannan on gut microbiota from hyperuricemia subjects in vitro: fermentation characteristics and inhibitory xanthine oxidase activity. Frontiers in Nutrition, 11(September), 1–10. https://doi.org/10.3389/fnut.2024.1465940

Dicks, L. M. T. (2022). Gut Bacteria and Neurotransmitters. Microorganisms, 10(9), 1–24. https://doi.org/10.3390/microorganisms10091838

Du, Q., Liu, J., & Ding, Y. (2021). Recent progress in biological activities and health benefits of konjac glucomannan and its derivatives. Bioactive Carbohydrates and Dietary Fibre, 26(June), 100270. https://doi.org/10.1016/j.bcdf.2021.100270

Fakharian, F., Thirugnanam, S., Welsh, D. A., Kim, W. K., Rappaport, J., Bittinger, K., & Rout, N. (2023). The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms, 11(7), 1–19. https://doi.org/10.3390/microorganisms11071849

Fang, Y., Ma, J., Lei, P., Wang, L., Qu, J., Zhao, J., … Sun, D. (2023). Konjac Glucomannan: An Emerging Specialty Medical Food to Aid in the Treatment of Type 2 Diabetes Mellitus. Foods, 12(2). https://doi.org/10.3390/foods12020363

FAO. (2016). Handbook Food Labeling. In Food and Agriculture Organization of the United Nations. Retrieved from https://www.fao.org/3/i6575e/i6575e.pdf

Farré, R., Fiorani, M., Rahiman, S. A., & Matteoli, G. (2020). Intestinal permeability, inflammation and the role of nutrients. Nutrients, 12(4), 1–18. https://doi.org/10.3390/nu12041185

Feng, Y. (2024). Konjac Glucomannan : Properties , Preparation , and Health Effects. 0, 123–130. https://doi.org/10.54254/2753-8818/62/20241507

Fu, J., Zheng, Y., Gao, Y., & Xu, W. (2022). Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms, 10(12), 1–18. https://doi.org/10.3390/microorganisms10122507

Fusco, W., Lorenzo, M. B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., … Ianiro, G. (2023). Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients, 15(9). https://doi.org/10.3390/nu15092211

Gallaher, C. M., Munion, J., Hesslink, R., Wise, J., & Gallaher, D. D. (2000). Cholesterol reduction by glucomannan and chitosan is mediated by changes in cholesterol absorption and bile acid and fat excretion in rats. Journal of Nutrition, 130(11), 2753–2759. https://doi.org/10.1093/jn/130.11.2753

Guida, C., & Ramracheya, R. (2020). PYY, a Therapeutic Option for Type 2 Diabetes? Clinical Medicine Insights: Endocrinology and Diabetes, 13. https://doi.org/10.1177/1179551419892985

Guo, L., Yokoyama, W., Chen, L., Liu, F., Chen, M., & Zhong, F. (2021a). Characterization and physicochemical properties analysis of konjac glucomannan: Implications for structure-properties relationships. Food Hydrocolloids, 120(March), 106818. https://doi.org/10.1016/j.foodhyd.2021.106818

Guo, L., Yokoyama, W., Chen, L., Liu, F., Chen, M., & Zhong, F. (2021b). Characterization and physicochemical properties analysis of konjac glucomannan: Implications for structure-properties relationships. Food Hydrocolloids, 120(April), 106818. https://doi.org/10.1016/j.foodhyd.2021.106818

Halahlah, A., Abik, F., Lahtinen, M. H., Kemppinen, A., Kaipanen, K., Kilpeläinen, P. O., … Mikkonen, K. S. (2023). Effects of pH and temperature of ultrafiltration on the composition and physicochemical properties of hot-water-extracted softwood galactoglucomannans. Industrial Crops and Products, 198(March). https://doi.org/10.1016/j.indcrop.2023.116656

Han, X., Ma, Y., Ding, S., Fang, J., & Liu, G. (2023). Regulation of dietary fiber on intestinal microorganisms and its effects on animal health. Animal Nutrition, 14, 356–369. https://doi.org/10.1016/j.aninu.2023.06.004

Han, Y., Zhang, L., Liu, X. Q., Zhao, Z. J., & Lv, L. X. (2017). Effect of glucomannan on functional constipation in children: A systematic review and meta-analysis of randomised controlled trials. Asia Pacific Journal of Clinical Nutrition, 26(3), 471–477. https://doi.org/10.6133/apjcn.032016.03

Hao, M., Zhu, X., Ji, X., & Shi, M. (2024). Properties , and In Vitro Digestibility of Yam Starch.

Hernández, M. A. G., Canfora, E. E., Jocken, J. W. E., & Blaak, E. E. (2019). The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients, 11(8). https://doi.org/10.3390/nu11081943

Ho, H. V. T., Jovanovski, E., Zurbau, A., Mejia, S. B., Sievenpiper, J. L., Au-Yeung, F., … Vuksan, V. (2017). A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. American Journal of Clinical Nutrition, 105(5), 1239–1247. https://doi.org/10.3945/ajcn.116.142158

Hodgkinson, K., El Abbar, F., Dobranowski, P., Manoogian, J., Butcher, J., Figeys, D., … Stintzi, A. (2023). Butyrate’s role in human health and the current progress towards its clinical application to treat gastrointestinal disease. Clinical Nutrition, 42(2), 61–75. https://doi.org/10.1016/j.clnu.2022.10.024

Iskandar, N. F., Cahyono, L. B. C., Harmayani, E., & Witasari, L. D. (2024). High purity glucomannan after ultrasonic-assisted extraction and α-amylase liquefaction of porang (Amorphophallus oncophyllus) flour. Food Research, 8(3), 242–251. https://doi.org/10.26656/fr.2017.8(3).212

Jain, A., Sarsaiya, S., Gong, Q., Wu, Q., & Shi, J. (2025). Amorphophallus konjac: traditional uses, bioactive potential, and emerging health applications. Frontiers in Plant Science, 16(February), 1–20. https://doi.org/10.3389/fpls.2025.1530814

Jardon, K. M., Canfora, E. E., Goossens, G. H., & Blaak, E. E. (2022). Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut, 71(6), 1214–1226. https://doi.org/10.1136/gutjnl-2020-323715

Jian, W., Siu, K. C., & Wu, J. Y. (2015). Effects of pH and temperature on colloidal properties and molecular characteristics of Konjac glucomannan. Carbohydrate Polymers, 134, 285–292. https://doi.org/10.1016/j.carbpol.2015.07.050

Jian, X., Jian, S., & Deng, B. (2024). Konjac Glucomannan: A functional food additive for preventing metabolic syndrome. Journal of Functional Foods, 115(February), 106108. https://doi.org/10.1016/j.jff.2024.106108

Joyce, S. A., Kamil, A., Fleige, L., & Gahan, C. G. M. (2019). The Cholesterol-Lowering Effect of Oats and Oat Beta Glucan: Modes of Action and Potential Role of Bile Acids and the Microbiome. Frontiers in Nutrition, 6(November), 1–15. https://doi.org/10.3389/fnut.2019.00171

Kaats, G. R., Bagchi, D., & Preuss, H. G. (2015). Konjac Glucomannan Dietary Supplementation Causes Significant Fat Loss in Compliant Overweight Adults. Journal of the American College of Nutrition, (October), 1–7. https://doi.org/10.1080/07315724.2015.1009194

Kapoor, D. U., Sharma, H., Maheshwari, R., Pareek, A., Gaur, M., Prajapati, B. G., … Sriamornsak, P. (2024a). Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications. Carbohydrate Polymers, 339(May), 122266. https://doi.org/10.1016/j.carbpol.2024.122266

Kapoor, D. U., Sharma, H., Maheshwari, R., Pareek, A., Gaur, M., Prajapati, B. G., … Sriamornsak, P. (2024b). Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications. Carbohydrate Polymers, 339(February), 122266. https://doi.org/10.1016/j.carbpol.2024.122266

Karabulut, G., Goksen, G., & Mousavi Khaneghah, A. (2024). Plant-based protein modification strategies towards challenges. Journal of Agriculture and Food Research, 15(October 2023), 101017. https://doi.org/10.1016/j.jafr.2024.101017

Keithley, J. K., Swanson, B., Mikolaitis, S. L., Demeo, M., Zeller, J. M., Fogg, L., & Adamji, J. (2013). Safety and efficacy of glucomannan for weight loss in overweight and moderately obese adults. Journal of Obesity, 2013. https://doi.org/10.1155/2013/610908

Luo, W., Liu, F., Qi, X., & Dong, G. (2022). Research progress of konjac dietary fibre in the prevention and treatment of diabetes. Food Science and Technology (Brazil), 42. https://doi.org/10.1590/fst.23322

Ma, J., Piao, X., Mahfuz, S., Long, S., & Wang, J. (2022). The interaction among gut microbes, the intestinal barrier and short chain fatty acids. Animal Nutrition, 9, 159–174. https://doi.org/10.1016/j.aninu.2021.09.012

Mahmud, N., Valizadeh, S., Oyom, W., & Tahergorabi, R. (2024). Exploring functional plant-based seafood: Ingredients and health implications. Trends in Food Science and Technology, 144(January), 104346. https://doi.org/10.1016/j.tifs.2024.104346

Martínez-Padilla, L. P., Sosa-Herrera, M. G., & Osnaya-Becerril, M. (2021). Effect of the konjac glucomannan concentration on the rheological behaviour and stability of sodium caseinate oil-in-water emulsions. International Dairy Journal, 117, 104993. https://doi.org/10.1016/j.idairyj.2021.104993

McBride, R. J., Miller, J. F., Blanazs, A., Hähnle, H. J., & Armes, S. P. (2022). Synthesis of High Molecular Weight Water-Soluble Polymers as Low-Viscosity Latex Particles by RAFT Aqueous Dispersion Polymerization in Highly Salty Media. Macromolecules, 55(17), 7380–7391. https://doi.org/10.1021/acs.macromol.2c01071

Meng, F. B., Zhang, Q., Li, Y. C., Li, J. J., Liu, D. Y., & Peng, L. X. (2020). Konjac glucomannan octenyl succinate as a novel encapsulation wall material to improve curcumin stability and bioavailability. Carbohydrate Polymers, 238, 116193. https://doi.org/10.1016/j.carbpol.2020.116193

Mirzababaei, A., Zandkarimi, R., Moradi, S., Rasaei, N., Amini, M. R., Pourreza, S., … Mirzaei, K. (2022). The effect of Glucomannan on fasting and postprandial blood glucose in adults: a systematic review and meta-analysis of randomized controlled trials. Journal of Diabetes and Metabolic Disorders, 21(1), 1055–1063. https://doi.org/10.1007/s40200-022-00993-6

Mohammadpour, S., Amini, M. R., Shahinfar, H., Tijani, A. J., Shahavandi, M., Ghorbaninejad, P., … Shab-Bidar, S. (2020). Effects of glucomannan supplementation on weight loss in overweight and obese adults: A systematic review and meta-analysis of randomized controlled trials. Obesity Medicine, 19(44), 100276. https://doi.org/10.1016/j.obmed.2020.100276

Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Frutos, M. J., Galtier, P., … Dusemund, B. (2017). Re‐evaluation of konjac gum (E 425 i) and konjac glucomannan (E 425 ii) as food additives. EFSA Journal, 15(6). https://doi.org/10.2903/j.efsa.2017.4864

Musazadeh, V., Rostami, R. Y., Moridpour, A. H., & Hosseini, Z. B. (2024). The effect of glucomannan supplementation on lipid profile in adults : a GRADE ‑ assessed systematic review and meta ‑ analysis. BMC Cardiovascular Disorders. https://doi.org/10.1186/s12872-024-04223-0

Myhrstad, M. C. W., Tunsjø, H., Charnock, C., & Telle-Hansen, V. H. (2020). Dietary fiber, gut microbiota, and metabolic regulation—current status in human randomized trials. Nutrients, 12(3). https://doi.org/10.3390/nu12030859

Nurlela, Ariesta, N., Laksono, D. S., Santosa, E., & Muhandri, T. (2021). Characterization of glucomannan extracted from fresh porang tubers using ethanol technical grade. Molekul, 16(1), 1–8. https://doi.org/10.20884/1.jm.2021.16.1.632

Nurlela, N., Ariesta, N., Santosa, E., & Muhandri, T. (2022). Physicochemical properties of glucomannan isolated from fresh tubers of Amorphophallus muelleri Blume by a multilevel extraction method. Food Research, 6(4), 345–353. https://doi.org/10.26656/fr.2017.6(4).580

Oliver, A., Alkan, Z., Stephensen, C. B., Newman, J. W., Kable, M. E., & Lemay, D. G. (2024). Diet, Microbiome, and Inflammation Predictors of Fecal and Plasma Short-Chain Fatty Acids in Humans. Journal of Nutrition, 154(11), 3298–3311. https://doi.org/10.1016/j.tjnut.2024.08.012

Pagonabarraga, J., Álamo, C., Castellanos, M., Díaz, S., & Manzano, S. (2023). Depression in Major Neurodegenerative Diseases and Strokes: A Critical Review of Similarities and Differences among Neurological Disorders. Brain Sciences, 13(2). https://doi.org/10.3390/brainsci13020318

Panel, E., & Nda, A. (2010). Scientific Opinion on the substantiation of health claims related to dietary fibre (ID 744, 745, 746, 748, 749, 753, 803, 810, 855, 1415, 1416, 4308, 4330) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Journal, 8(10), 1–23. https://doi.org/10.2903/j.efsa.2010.1735

Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., … Di Ciaula, A. (2022). Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 23(3). https://doi.org/10.3390/ijms23031105

Ratcliffe, I., Williams, P. A., Viebke, C., & Meadows, J. (2005). Physicochemical characterization of konjac glucomannan. Biomacromolecules, 6(4), 1977–1986. https://doi.org/10.1021/bm0492226

Rather, R. A., Bhat, M. A., & Shalla, A. H. (2022). An insight into synthetic and physiological aspects of superabsorbent hydrogels based on carbohydrate type polymers for various applications: A review. Carbohydrate Polymer Technologies and Applications, 3(March), 100202. https://doi.org/10.1016/j.carpta.2022.100202

Recharla, N., Geesala, R., & Shi, X. Z. (2023). Gut Microbial Metabolite Butyrate and Its Therapeutic Role in Inflammatory Bowel Disease: A Literature Review. Nutrients, 15(10). https://doi.org/10.3390/nu15102275

Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology, 47(6), 587–597. https://doi.org/10.1007/s13197-010-0162-6

Setiati, R., Malinda, M. T., & Sabrina, J. (2021). The potential of polymer for enhanced oil recovery process on oil refinery: A literature research. IOP Conference Series: Earth and Environmental Science, 737(1). https://doi.org/10.1088/1755-1315/737/1/012046

Shah, B. R., Li, B., Al, H., Xu, W., & Mráz, J. (2020). public news and information website . Elsevier hereby grants permission to make all its COVID-19-related research that is availablEffects of prebiotic dietary fibers and probiotics on human health: With special focus on recent advancement in their encapsu. Trends in Food Science and Technology, 102, 178–192.

Shaikh, S. D., Sun, N., Canakis, A., Park, W. Y., & Weber, H. C. (2023). Irritable Bowel Syndrome and the Gut Microbiome: A Comprehensive Review. Journal of Clinical Medicine, 12(7). https://doi.org/10.3390/jcm12072558

Shin, Y., Han, S., Kwon, J., Ju, S., Choi, T. G., Kang, I., & Kim, S. S. (2023). Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients, 15(20), 1–18. https://doi.org/10.3390/nu15204466

Sidell, D. R., Kim, I. A., Coker, T. R., Moreno, C., & Shapiro, N. L. (2013). Food choking hazards in children. International Journal of Pediatric Otorhinolaryngology, 77(12), 1940–1946. https://doi.org/10.1016/j.ijporl.2013.09.005

Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 11(January), 1–14. https://doi.org/10.3389/fendo.2020.00025

Sood, N., Baker, W. L., & Coleman, C. I. (2008). Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: Systematic review and meta-analysis. American Journal of Clinical Nutrition, 88(4), 1167–1175. https://doi.org/10.1093/ajcn/88.4.1167

Sukkar, S. G., Vaccaro, A., Ravera, G. B., Borrini, C., Gradaschi, R., Massa Sacchi-Nemours, A., … Andraghetti, G. (2013). Appetite control and gastrointestinal hormonal behavior (CCK, GLP-1, PYY 1-36) following low doses of a whey protein-rich nutraceutic. Mediterranean Journal of Nutrition and Metabolism, 6(3), 259–266. https://doi.org/10.1007/s12349-013-0121-7

Suwannaporn, P., Thepwong, K., Tester, R., Al-Ghazzewi, F., Piggott, J., Shen, N., … Tang, M. (2013). Tolerance and nutritional therapy of dietary fibre from konjac glucomannan hydrolysates for patients with inflammatory bowel disease (IBD). Bioactive Carbohydrates and Dietary Fibre, 2(2), 93–98. https://doi.org/10.1016/j.bcdf.2013.09.005

Tan, X., Wang, B., Zhou, X., Liu, C., Wang, C., & Bai, J. (2024). Fecal fermentation behaviors of Konjac glucomannan and its impacts on human gut microbiota. Food Chemistry: X, 23(May), 101610. https://doi.org/10.1016/j.fochx.2024.101610

Tang, R., & Li, L. (2021). Modulation of Short-Chain Fatty Acids as Potential Therapy Method for Type 2 Diabetes Mellitus. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021. https://doi.org/10.1155/2021/6632266

Tedelind, S., Westberg, F., Kjerrulf, M., & Vidal, A. (2007). Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World Journal of Gastroenterology, 13(20), 2826–2832. https://doi.org/10.3748/wjg.v13.i20.2826

van Zonneveld, S. M., van den Oever, E. J., Haarman, B. C. M., Grandjean, E. L., Nuninga, J. O., van de Rest, O., & Sommer, I. E. C. (2024). An Anti-Inflammatory Diet and Its Potential Benefit for Individuals with Mental Disorders and Neurodegenerative Diseases—A Narrative Review. Nutrients , 16(16). https://doi.org/10.3390/nu16162646

Victoria Obayomi, O., Folakemi Olaniran, A., & Olugbemiga Owa, S. (2024). Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. Journal of Functional Foods, 119(June), 106337. https://doi.org/10.1016/j.jff.2024.106337

Vo, T. P., Nguyen, N. T. U., Le, V. H., Phan, T. H., Nguyen, T. H. Y., & Nguyen, D. Q. (2023). Optimizing Ultrasonic-Assisted and Microwave-Assisted Extraction Processes to Recover Phenolics and Flavonoids from Passion Fruit Peels. ACS Omega, 8(37), 33870–33882. https://doi.org/10.1021/acsomega.3c04550

Vuksan, V., Jenkins, D., Spadafora, P., Sievenpiper, J., Owen, R., Vidgen, E., … Bruce-Thompson, C. (1999). Konjac-Mannan (Glucomannan) Improves Glycemia and Other Associated Risk Factors for Coronary Heart Disease in Type 2 Diabetes. Diabetes Care, 22(6), 913–919.

Wang, L., Su, Z., Li, Y. C., Cao, B. Y., Su, C., & Gong, C. X. (2024). Relationship of Glucagon-like Peptide 1 and Peptide YY with Catch-up Growth in Children Born Small for Gestational Age. JCRPE Journal of Clinical Research in Pediatric Endocrinology, 16(1), 69–75. https://doi.org/10.4274/jcrpe.galenos.2023.2023-5-21

Wang, S., Zhou, B., Wang, Y., & Li, B. (2015). Preparation and characterization of konjac glucomannan microcrystals through acid hydrolysis. Food Research International, 67, 111–116. https://doi.org/10.1016/j.foodres.2014.11.008

Wardhani, D. H., Rahayu, L. H., Cahyono, H., & Ulya, H. L. (2020). Purification of Glucomannan of Porang (Amorphophallus oncophyllus) Flour using Combination of Isopropyl Alcohol and Ultrasound-Assisted Extraction. Reaktor, 20(4), 203–209. https://doi.org/10.14710/reaktor.20.4.203-209

Widjanarko, S. B., Affandi, M., & Wahyuli, Z. (2022). A review on konjac glucomannan and hydrolysed konjac glucomannan. Food Research, 6(5), 425–433. https://doi.org/10.26656/fr.2017.6(5).920

Wilianto, Y. R., Tjahjono, Y., Foe, K., Wijaya, S., Ervina, M., Setiadi, D. A., … Wijaya, H. (2024). A novel konjac rice formula with glucomannan and tapioca starch improve postprandial glycemic response – a randomized single-blind clinical trial. Nutrition and Food Science, 54(8), 1437–1450. https://doi.org/10.1108/NFS-12-2023-0290

Xu, C., Yu, C., Yang, S., Deng, L., Zhang, C., Xiang, J., & Shang, L. (2023). Effects of Physical Properties of Konjac Glucomannan on Appetite Response of Rats. Foods, 12(4). https://doi.org/10.3390/foods12040743

Xu, W., Wang, S., Ye, T., Jin, W., Liu, J., Lei, J., … Wang, C. (2014). A simple and feasible approach to purify konjac glucomannan from konjac flour - Temperature effect. Food Chemistry, 158, 171–176. https://doi.org/10.1016/j.foodchem.2014.02.093

Yang, Q., Vijayakumar, A., & B. Kahn, B. (2019). Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol, 19(10), 1–52. https://doi.org/10.1038/s41580-018-0044-8.Metabolites

Yasar Yildiz, S., & Toksoy Oner, E. (2014). Mannan as a Promising Bioactive Material for Drug Nanocarrier Systems. Application of Nanotechnology in Drug Delivery, (July). https://doi.org/10.5772/58413

Yunita, T., Rizky, D. Y., Rahajeng, U. P., & Fredy, K. (2019). Glucomanan Extract From Salak Seed (Salacca edulis Reinw.) As An Alternative Material of Making Hard Capsule Shell. SPECTA Journal of Technology, 2(1), 37–42. https://doi.org/10.35718/specta.v2i1.93

Zalewski, B. M., & Szajewska, H. (2019). No Effect of Glucomannan on Body Weight Reduction in Children and Adolescents with Overweight and Obesity: A Randomized Controlled Trial. Journal of Pediatrics, 211, 85-91.e1. https://doi.org/10.1016/j.jpeds.2019.03.044

Zhang, L., Lu, Q.-Y., Wu, H., Cheng, Y.-L., Kang, J., & Xu, Z.-G. (2023). The Intestinal Microbiota Composition in Early and Late Stages of Diabetic Kidney Disease. Microbiology Spectrum. https://doi.org/10.1128/spectrum.00382-23

Zhang, R., He, X., Xiong, L., & Sun, Q. (2025). Effects of the interaction between konjac glucomannan and starch on the physicochemical properties, recrystallization characteristics, and digestibility of starch: A review. Food Hydrocolloids, 160(P2), 110840. https://doi.org/10.1016/j.foodhyd.2024.110840

Zhang, Yanlin, Lei, Y., Qi, S., Fan, M., Zheng, S., Huang, Q., & Lu, X. (2023). Ultrasonic-microwave-assisted extraction for enhancing antioxidant activity of Dictyophora indusiata polysaccharides: The difference mechanisms between single and combined assisted extraction. Ultrasonics Sonochemistry, 95(February). https://doi.org/10.1016/j.ultsonch.2023.106356

Zhang, Yanting, Tong, C., Chen, Y., Xia, X., Jiang, S., Qiu, C., & Pang, J. (2024). Advances in the construction and application of konjac glucomannan-based delivery systems. International Journal of Biological Macromolecules, 262(P1), 129940. https://doi.org/10.1016/j.ijbiomac.2024.129940

Zhang, Z., Zhang, Y., Tao, X., Wang, Y., Rao, B., & Shi, H. (2023). Effects of Glucomannan Supplementation on Type II Diabetes Mellitus in Humans: A Meta-Analysis. Nutrients, 15(3). https://doi.org/10.3390/nu15030601

Zheng, Z., Tang, J., Hu, Y., & Zhang, W. (2022). Role of gut microbiota-derived signals in the regulation of gastrointestinal motility. Frontiers in Medicine, 9(July), 1–14. https://doi.org/10.3389/fmed.2022.961703

Zhou, M., Ma, J., Kang, M., Tang, W., Xia, S., Yin, J., & Yin, Y. (2024). Flavonoids, gut microbiota, and host lipid metabolism. Engineering in Life Sciences, 24(5), 1–19. https://doi.org/10.1002/elsc.202300065

Zhou, Y., Cao, H., Hou, M., Nirasawa, S., Tatsumi, E., Foster, T. J., & Cheng, Y. (2013). Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat flour. Food Research International, 51(2), 879–885. https://doi.org/10.1016/j.foodres.2013.02.002




DOI: https://doi.org/10.35308/jtpp.v7i1.12080

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Nurchalisah Rustan M, Sri Wahyuni, Baihaqi Baihaqi, Rustan Massinai, Febryansyah Pagala

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

JURNAL TEKNOLOGI PENGOLAHAN PERTANIAN
e-ISSN: 2723-5157 --- DOI: 10.35308

UNIVERSITAS TEUKU UMAR

Jl. Alue Peunyareng, Ujong Tanoh Darat, Meureubo, Kabupaten Aceh Barat, Aceh 23681, Indonesia.

+62 655-7110535 ; +6285260005998

License Creative Commons This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------