Penggunaan Moving Average dan Exponential Smoothing untuk Memprediksi Kebutuhan Beras Raskin di Kota Banda Aceh

Heri Tri Irawan, Iing Pamungkas, Fitriadi Fitriadi, Arhami Arhami, Khairul Hadi, T.M Azis Pandria


This study uses moving average and exponential smoothing methods to predict the demand for Raskin rice in Banda Aceh. The Logistics Agency (Bulog) is a food institution in Indonesia that organizes a rice trading system, which functions to provide rice distribution services to the public. The fluctuation in demand for Raskin rice in Banda Aceh makes it difficult for Bulog to predict future needs. In addition, the excess supply of Raskin rice will also be very detrimental because rice is a staple that is perishable. Therefore, it is necessary to conduct research to predict the demand for Raskin rice in Banda Aceh. The results of forecasting or prediction by comparing two methods and three errors in forecasting accuracy, it can be concluded that the exponential smoothing method with α = 0.90 can be used to predict the demand for Raskin rice in Banda Aceh City. The prediction result of the demand for raskin rice in Banda Aceh is 92,407 tons, with an MAD error rate of 4.92, MSE 34.58, and MAPE 0.006%, or having the smallest value compared to the 7-month moving average method.


Raskin Rice; Forecast; Predict; Moving Average; Exponential Smoothing

Full Text:



Hargianto, A. 2013, Analisis Peramalan Produksi Karet Di Pt Perkebunan Nusantara Ix (Persero) Kebun Batujamus Kabupaten Karanganyar, Universitas Sebelas Maret.

Sagheer, A., & Kotb, M. 2019, Time series forecasting of petroleum production using deep LSTM recurrent networks, Neurocomputing, 323, 203-213.

Tealab, A. 2018, Time series forecasting using artificial neural networks methodologies: A systematic review, Future Computing and Informatics Journal, 3(2), 334-340.

Rachman, R. 2018, Penerapan Metode Moving Average Dan Exponential Smoothing Pada Peramalan Produksi Industri Garment, Jurnal Informatika, 5(2), 211-220.

Sarja, N. L. A. K. Y., & Wirawan, I. W. W. 2014, Peramalan Permintaan Produk Perak Menggunakan Metode Simple Moving Average Dan Exponential Smoothing, Jurnal Sistem dan Informatika, 9(1).

de Oliveira, E. M., & Oliveira, F. L. C. 2018, Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods, Energy, 144, 776-788.

Singh, S. N., & Mohapatra, A. 2019, Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting, Renewable energy, 136, 758-768.

Wang, Q., Li, S., Li, R., & Ma, M. 2018, Forecasting US shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model, Energy, 160, 378-387.

Zhao, J., Duan, Y., & Liu, X. 2018, Uncertainty analysis of weather forecast data for cooling load forecasting based on the Monte Carlo method, Energies, 11(7), 1900.

Pamungkas, I., Arhami., Dirhamsyah, M., 2019, Monte Carlo simulation for predicting the reliability of a boiler in the Nagan Raya steam power plant. IOP Conference Series: Materials Science and Engineering, vol 523, No 1, hal 012071.

Yang, C., & Kumar, M. 2018, On the effectiveness of Monte Carlo for initial uncertainty forecasting in nonlinear dynamical systems, Automatica, 87, 301-309.

Pamungkas, I., Irawan, H. T., Arhami, A., & Dirhamsyah, M. ,2020, Simulasi Monte Carlo untuk Menentukan Keandalan pada Bagian Boiler di Pembangkit Listrik Berbasis Batubara, Jurnal Optimalisasi, 4(2), 83-96.

Pamungkas, I. 2019, Penentuan Tingkat Risiko dan Keandalan pada Boiler di Industri Pembangkit Listrik Nagan Raya, ETD Unsyiah.

Subagyo, P. 2006, Forecasting Konsep dan Aplikasi, Edisi Dua, BPFE. Yogyakarta.

Herjanto, E. 2009, Manajemen Operasi dan produksi, Jakarta: Grasindo.

Yamit, Z. 2008, Manajemen Produksi dan Operasi edisi kempat, Yogyakarta: Ekonisia.



  • There are currently no refbacks.

Copyright (c) 2020 Jurnal Optimalisasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JOPT: Jurnal Optimalisasi Indexing and Abstracting by: