Penentuan Kluster UMKM Sektor Perdagangan dan Perikanan Melalui Pendekatan Metode Clustering Data Mining di Kabupaten Aceh Barat

Arie Saputra, Riski Asnif Sahputra


So far, small and medium enterprises (MSMEs) have shown a contribution of 61.7% to GDP, or IDR 8,573.89 trillion. Apart from that, MSMEs can absorb around 97% of the national workforce. However, in reality, MSMEs face many problems, one of the most common being a lack of business capital. One of the factors causing the slow growth of MSMEs in Indonesia is development policies that are not on target. This is especially true for this research in West Aceh District. Each MSME is unique, making it difficult for banking institutions to establish consistent financing policies. This research aims to map the characteristics of MSMEs in the form of groups to make it easier to determine policy-making patterns. The Hierarchical Data Mining Clustering Method is considered appropriate because it has a much lower bias than K-means. Apart from that, this method can reduce data complexity. According to the results of data distribution for MSMEs in the fisheries sector using Matlab 2016b software, there are 6 clusters, and the results of data distribution for MSMEs in the trade sector using Matlab 2016b software show 7 clusters. Each cluster has main parameters that make MSMEs superior, such as length of business, capital ownership, sales projections, and average sales. For the last parameter.


MSMEs; Herarchical cluster; Data mining

Full Text:



W. Sudrajat, I. Cholid, and J. Petrus, “Wahyu Sudrajat et al, Penerapan Algoritma K-Means Untuk …………………,” p. 27, 2022.

P. Martins, M. Abbasi, F. Sa, J. Celiclio, F. Morgado, and F. Caldeira, “Intelligent beacon location and fingerprinting,” Procedia Comput. Sci., vol. 151, no. 2018, pp. 9–16, 2019, doi: 10.1016/j.procs.2019.04.005.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available:

WISTI ARISTIKA and WIRA JAYA HARTONO, “Penerapan Clustering K-Means Untuk Menentukan PengaruhMedia Sosial Facebook Terhadap Usaha Mikro, Kecil DanMenengah (Umkm) Di Kecamatan Pekanbaru Kota,” J. Ilmu Komput. dan Bisnis, vol. 11, no. 1, pp. 2389–2395, 2020.

P. Puntoriza and C. Fibriani, “Analisis Persebaran UMKM Kota Malang Menggunakan Cluster K-means,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 86–94, 2020, doi: 10.33633/joins.v5i1.3469.

D. Zhang, Y. Zhang, and C. Zhang, “Data mining approach for automatic ship-route design for coastal seas using AIS trajectory clustering analysis,” Ocean Eng., vol. 236, p. 109535, Sep. 2021, doi: 10.1016/J.OCEANENG.2021.109535.

S. M. Dol and P. M. Jawandhiya, “Classification Technique and its Combination with Clustering and Association Rule Mining in Educational Data Mining — A survey,” Eng. Appl. Artif. Intell., vol. 122, p. 106071, Jun. 2023, doi: 10.1016/J.ENGAPPAI.2023.106071.

D. P. Dabhi, M. R. Patel, and M. R. P. Dipak P Dabhi, “Extensive Survey on Hierarchical Clustering Methods in Data Mining,” Int. Res. J. Eng. Technol., vol. 03, no. 11, pp. 659–665, 2016.

A. Dogan and D. Birant, “Machine learning and data mining in manufacturing,” Expert Syst. Appl., vol. 166, p. 114060, Mar. 2021, doi: 10.1016/J.ESWA.2020.114060.

X. Ran, Y. Xi, Y. Lu, X. Wang, and Z. Lu, “Comprehensive survey on hierarchical clustering algorithms and the recent developments,” Artif. Intell. Rev. 2022 568, vol. 56, no. 8, pp. 8219–8264, Dec. 2022, doi: 10.1007/S10462-022-10366-3.

M. Al Akasheh, E. Faisal Malik, O. Hujran, and N. Zaki, “A Decade of Research on Data Mining Techniques for Predicting Employee Turnover: A Systematic Literature Review,” Expert Syst. Appl., p. 121794, Oct. 2023, doi: 10.1016/J.ESWA.2023.121794.

A. Rifa’i, “Peran Bank Pembiayaan Rakyat Syariah dalam Mengimplementasikan Keuangan Inklusif Melalui Pembiayaan UMKM,” Ikonomika, vol. 2, no. 2, p. 177, 2017, doi: 10.24042/febi.v2i2.1639.

F. E. Subekti and L. Akhsani, “Pengembangan Modul Statistika Deskriptif Berbasis Pemecahan Masalah,” AKSIOMA J. Progr. Stud. Pendidik. Mat., vol. 9, no. 3, p. 530, 2020, doi: 10.24127/ajpm.v9i3.2869.

V. H. Pranatawijaya, W. Widiatry, R. Priskila, and P. B. A. A. Putra, “Penerapan Skala Likert dan Skala Dikotomi Pada Kuesioner Online,” J. Sains dan Inform., vol. 5, no. 2, pp. 128–137, 2019, doi: 10.34128/jsi.v5i2.185.

M. Nishom, “Perbandingan Akurasi Euclidean Distance, Minkowski Distance, dan Manhattan Distance pada Algoritma K-Means Clustering berbasis Chi-Square,” J. Inform. J. Pengemb. IT, vol. 4, no. 1, pp. 20–24, 2019, doi: 10.30591/jpit.v4i1.1253.



  • There are currently no refbacks.

Copyright (c) 2023 Jurnal Optimalisasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

JOPT: Jurnal Optimalisasi Indexing and Abstracting by: